

शेखावाटी मिशन : 100

पदेगा

जीव विज्ञान (कक्षा- 12)

बदेगा

राजस्थान

विभिन्न विषयों की नवीनतम बुकलेट डाउनलोड करने हेतु टेलीग्राम QR CODE स्कैन करें

कार्यालय : संयुक्त निदेशक स्कूल शिक्षा, चूरू संभाग, चूरू (राज.)

संयोजक कार्यालय – संयुक्त निदेशक कार्यालय, चूरू संभाग, चूरू 🔇

शेखावाटी मिशन - १०० मार्गदर्शक

अनुसूया सिंह संयुक्त निदेशक (स्कूल शिक्षा) चूरू संभाग, चूरू

महेन्द्र सिंह बड्सरा संभागीय कॉर्डिनेटर शेखावाटी मिशन 100 संयुक्त निदेशक कार्यालय, चूरू संभाग, चूरू

संकलनकर्ता टीम : जीव विज्ञान

रामावतार भदाला तकनीकी सहयोगी शेखावाटी मिशन 100

राजेन्द्र प्रसाद गोरा रा.बा.उ.मा.वि. रानोली (सीकर)

संगीता रा.उ.मा.वि. अमरपुरा (दांतारामगढ)

दामोदर प्रसाद योगी

रा.उ.मा.वि. रूपगढ़ (सीकर)

अनिल कुमार स्वामी

रा.उ.मा.वि. मण्डूस्या (नीमकाथाना)

अभिषेक भारद्वाज

रा.उ.मा.वि. करड़ (सीकर)

शैक्षिक प्रकोष्ठ अनुभाग, संयुक्त निदेशक कार्यालय, चूरू संभाग, चूरू (राज.)

प्रश्न-पत्र की योजना 2024

कक्षा — **XII** विषय — जीव विज्ञान अवधि — 3 घण्टे 15 मिनट

पूर्णांक – 56

उद्देश्य हेतु अंकभार – 1.

क्र.सं.	उद्देश्य	अंकभार	प्रतिशत
1.	ज्ञान	20.50	36.60
2.	अवबोध	14.50	25.89
3.	ज्ञानोपयोग / अभिव्यक्ति	14.50	25.89
4.	कौशल / मौलिकता	6.50	11.60
	योग	56	100

प्रश्नों के प्रकारवार अंकभार -2.

क्र.	प्रश्नों का प्रकार	प्रश्नों की	अंक	कुल अंक	प्रतिशत	प्रतिशत	संभावित
सं.		संख्या	प्रति प्रश्न		(अंको का)	(प्रश्नों का)	समय
1.	वस्तुनिष्ठ	16	1/2 (16)	08	14.29	31.37	40
2.	रिक्त स्थान	10	½ (10)	05	8.92	19.61	25
3.	अतिलघुत्तरात्मक	08	1 (08)	08	14.28	15.69	25
4.	लघुत्तरात्मक	12	1½ (12)	18	32.14	23.53	45
5.	दीर्घउत्तरीय	03	03 (03)	09	16.27	5.88	30
6.	निबंधात्मक	02	04 (02)	08	14.28	3.92	30
	योग	51		56	100.00	100.00	195 ਸਿਜਟ

विकल्प योजना : खण्ड 'स' एवं 'द' में हैं ।

विषय वस्तु का अंकभार – 3.

क्र.सं.	विषय वस्तु	अंकभार	प्रतिशत
1	पुष्पी पौधों में लैंगिक जनन	5	8.93
2	मानव जनन	4	7.14
3	जनन स्वास्थ्य	2	3.57
4	वंशागति एवं विविधता के सिद्धांत	5	8.93
5	वंशागति के आण्विक आधार	6	10.71
6	विकास	3	5.36
7	मानव स्वास्थ्य एवं रोग	6	10.71
8	मानव कल्याण में सूक्ष्मजीव	5	8.93
9	जैव प्रौद्योगिकी सिद्धांत एवं प्रक्रम	4	7.14
10	जैव प्रौद्योगिकी एवं उसके उपयोग	4	7.14
11	जीव और समष्टियाँ	4	7.14
12	पारितंत्र	5	8.93
13	जैव विविधता एवं संरक्षण	3	5.36
	योग	56	100

हस्ताक्षर

		यो		5(5)	4(5)	2(2)	5(5)	(2)9	3(4)	6(4)	5(5)	4(4)	4(4)	4(3)	5(3)	3(4)	56(51)	56(51)	
			कम्जाक्र्वनी																
		कता	कम्भारायक																
	26	कौशल / मौलिकता	<i>बर्त्वे</i> यदाव्सक	11/2(1)			11/4(1)				11/2(1)	11/2(1)					6(4)	(2) 7/9	
	पूर्णीक – 56	कौशल	अपिलधुत्तरात्मक																_ √m>
	F		माक्ष्र क्रिंग				(1)%										1/2(1)		योतक
			छनिक्रुष्ट																'प्रश्नों' के द्योतक
			निबन्धात्मक												4*(1)		4(1)		प्रश्न
		य्यक्ति	कम्जाश <i>नच्</i> रेषिक		€ 3												3(1)		संख्या
		/अम्	वहैयरात्मक										11/2(1)				1%(1)	14% (11)	र की
		ज्ञानोपयोग / अभिव्यक्ति	अप्रिकर्द्वयराप्सक	(1)1					1(1)	(1)1	1(1)						4(4)	14%	ग अंद
		ज्ञान्	माक्ष्य प्रथान							(1)%	(I)%						1(2)		की तथा अंदर की संख्या
			क्रमीक्रिक			1,7(1)										1,7(1)	1(2)		'अंकों'
	<u>I</u>		कम्भाक्त्म्बन्ध																गंखा
ħ	व विश्		कम्जाश <u>क</u> क्त			_		* E									3(1)	_	की
শু শুন	骨	ট্র	अर्ह्ययत्स्यक	11/2(1)		11%(1)	11/2(1)				11%(1)					11/2(1)	7½(5)	(2)	बाहर
प्रश्न-पत्र ब्ल्यू प्रिन्ट	विषय :- जीव विज्ञान	अवबोध	अपिलघुत्तरात्मक					1(1)									1(1)	14% (13)	उक के
	विष		नाक्ष्र क्त्रजी										(1)%				1/2(1)		नोट:- कोष्डक के बाहर की संख्या 'अंकों'
ᅜ			कस्तुनिष्ठ					12(1)	17/(1)	(1)%				1,7(1)	1/2(1)		21/2(5)		∯ ÿ
			कम्जाक्ष्म्बन्त							* E							4(1)		₩ —
			दीविष्यरात्मक											3*(1)			3(1)		5 विकल
		ᆔ	वर्द्धयत्रात्मक									11/2(1)	11/2(1)				3(2)	(22)	में एक आंतरिक विकल्प
		গ্রান	अपिलघुत्तरात्मक				1(1)	1(1)	1(1)								3(3)	20% (22)	ने एक
			नाक्ष्य क्रमन	1,7(1)	1,7(1)		1/2(1)		1)%			1/2(1)				1/2(1)	3(6)		में प्रत्येक ग
			छनिह्रभ	1/2(1)	1/2(1)		1/2(1)				(1)%	(1)%	(1)%	1/2(1)	(1)%	(1)%	4½(9)		υĮ
	本部 - XII	सं.		पुष्पी पौधों में लैंगिक जनन	मानव जनन	जनन स्वास्थ्य	बंशागति एवं विविधता के सिद्धांत	वंशागति के आधिवक आधार	विकास	मानव स्वास्थ्य एवं रोग	मानव कल्याण में सूक्ष्मजीव	जैव प्रौद्योगिकी सिद्धांत एवं प्रक्रम	जैव प्रौद्योगिकी एवं उसके उपयोग	जीव और समस्टियाँ	. पारितंत्र	न जैव विविधता एवं संरक्षण	योग		विकल्पों की योजना :— खण्ड 'स' एवं
		क्र.सं		_	7	33	4	5	9	7	∞	6	10	Ξ	12	13			

4

पुष्पीय पादपों में लैंगिक जनन

अंक भार = 5, प्रश्नो की संख्या = 5, वस्तुनिष्ठ-1 (½ अंक), रिक्त स्थान-1 (½ अंक) अतिलघुत्तरत्मक-1 (1 अंक), लघुउत्तरात्मक - 02 (प्रत्येक 1 ½ अंक)

— <u>—</u> वस्तुनि	ष्ठ प्रश्न:-				करने वाले वैज्ञानिक थे	-		
1.		के अंतराल पर पुष्पन दश्	र्गाता है,		(अ) नावाश्चिन (1898)(ब) स्ट्रासबर्गर (1898)			
	वह है-	-			(स) एमिसी (1898)	(द) मेण्डल (1898)) (अ)	
	(अ) एडनसोनिया	(ब) काइगेलिया		9.	भ्रूणपोषी बीज पाये जा	ते है-		
	(स) स्ट्रोबिलेन्थस कुन्धि	थयाना			्र (अ) अरण्डी (रिसिनस	। कम्यूनिस)		
	(द) बम्बूसा टूल्डा		(स)		(ब) जौ (हॉर्डीयम वल			
2.	असुमेलित जोड़े को पह	चानिए-			(स) नारियल (कोकॉस			
	(अ) लघुबीजाणुधानी	– परागकोश			(द) उपरोक्त सभी		(द)	
	(ब) गुरुबीजाणुधानी	– बीजाण्डकायी ऊतक		10.	स्थायी बीजाण्डकायी उ	फ्रतककहलाता है	तथा यह	
	(स) परागकण	– नर युग्मक			में उपस्थित होता			
	(द) भ्रूणकोष	– मादा युग्मकोद्भिद	(स)		(अ) परिभ्रूणपोष, काली	मिर्च		
3.	निम्न में से कौनसा पाद	प जलपरागित पादप नहीं	है -		(ब) भ्रूणपोष, नारियल			
	(अ) जोस्टेरा	(ब) वेलिसनेरिया			(स) परिभ्रूणपोष, नारिय	ग ल		
	(स) हाइड्रिला	(द) कैनाबिस	(द)		(द) भ्रूणपोष, कालीमीच	र्व	(अ)	
4.	परागकण की	विभाजित होकर दो नर	युग्मकों	11.	यदि किसी आवृतबीर्ज	ो पादप के भ्रूणपोष को	शिका में	
	का निर्माण करती है-				• •	गदप की मूल की प्रत्येक	कोशिका	
	(अ) कायिक कोशिका	(ब) जनन कोशिका			में गुणसूत्रों की संख्या हं	,ोगी-		
	(स) लघुबीजाणु मातृ क	<u> नेशिका</u>			(अ) 4	(অ) ৪		
	(द) उपरोक्त में से कोई	ई नहीं	(অ)		(स) 16	(द) 24	(स)	
5.	जायांग का वह भाग	जो परागकण की सुसंगत	तता का	12.	भारतीय पादप भ्रौणिक			
	निर्धारण करता है, वह	भाग है-			(अ) पी. माहेश्वरी	(ब) स्वामीनाथन		
	(अ) वर्तिका	(ब) वर्तिकाग्र			(स) सी.जे. बटलर	(द) प्रोफेसर आर.मिश्र	ग (अ)	
	(स) अण्डाशय	(द) सहायक कोशिकार	र्ँ (ब)	13.	•	एक बड़ी ढ़ालनुमा आ	कृति का	
6.		ागकणों के निर्माण हेतु			बीजपत्र पाया जाता है,			
		काएँ अर्द्धसूत्री विभाजन	में भाग		(अ) एल्युरोन परत			
	लेंगी?				(स) प्रांकुरचोल	(द) हाइलम	(ब)	
	(अ) 64	(অ) 32		14.	बहुभ्रूणता सामान्यतया	पायी जाती है-		
	(स) 16	(द) 8	(स)		(अ) केला	(ब) टमाटर		
7.		पत्री पादप का भ्रूणकोश	निषेचन		(स) आलू	(द) सिट्रस	(द)	
	के दौरान होता है-			15.	वायुपरागित पुष्पों के प	ारागकणों की विशेषता ह	ो़ती है-	
		(ब) 7 - कोशिकीय	, .		(अ) आकार में छोटे	(ब) वजन में हल्के		
	(स) 6- कोशिकीय		(ন্ব)		(स) सतह शुष्क	(द) उपरोक्त सभी	(द)	
8.	फ्रिटिलेरिया एवं लिलि	यम पादप में द्विनिषेचन क	न खोज					

शेखावाटी मिशन-100

सत्र: 2023-24

रिक्त स्थानों की पूर्ति कीजिए -

- 1. परागकण की बाह्य भिति में स्पोरोपॉलेनिन नामक पदार्थ पाया जात है जो जैव अनअपघटनीय व अत्यधिक प्रतिरोधी होता है।
- एक परिपक्व नर युग्मकोद्भिद में <u>तीन (3)</u> केन्द्रक उपस्थित होते हैं।
- 3. निषेचन क्रिया के दौरान परागनिलका, भ्रूणकोष में बीजाण्डद्वार छोर से प्रवेश करती है।
- पुष्प में स्थित पुंकेसरों के परागकोशों को परिपक्वन से पूर्व हटा देना, विपुंसन कहलाता है।
- गुणसूत्रों की संख्या (गुणित) के आधार पर आवृतबीजी भ्रूणपोष तिर्गुणित (3n) जबिक अनावृतबीजी भ्रूणपोष अगुणित (n) होता है।
- लघुबीजाणुधानी की सबसे आंतिरक परत <u>टेपीटम</u> होती है।
- बिना निषेचन क्रिया के फल निर्माण की क्रिया अनिषेक फलन कहलाता है।
- 8. सेब आभासी / असत्य फल है।
- परागकणों का वर्तिकाग्र तक पहुँचना परागण कहलाता है।
- <u>चमगादड़</u> परागण दर्शाने वाले पादपों के पुष्प खुशबुदार, सामान्यतया सफेद एवं रात्रि में खिलते हैं।

अतिलघुत्तरात्मक प्रश्न -

1. बहुभूणता किसे कहते है?

- उत्तर सामान्यतया एक बीज में एक ही भ्रूण विकसित होता है परंतु कभी-कभी एक से अधिक भ्रूण विकसित हो जाते है तो इसे बहुभ्रूणता कहते हैं।
 - ❖ खोजकर्ता :- ल्यूवेन हॉक (संतरे में)
- ऐसे दो पादपों के उदाहरण दीजिए जिनके अंडाशय में केवल एक ही बीजाण्ड होता है?
- उत्तर (i) गेहूँ ट्रिटिकम एस्टीवम
 - (ii) आम- मैंजिफेरा इंडिका
- उस कोशिका का नाम बताइए जिसके द्वारा नारियल में भ्रूणपोष का विकास होता है।
- उत्तर प्राथमिक भ्रूणपोष कोशिक (3n)
 - 💠 नारियल में केंद्रकीय भ्रूणपोष पाया जाता है।
- 4. हरकोगैमी से क्या अभिप्राय है?
- उत्तर परपरागण दर्शाने वाले पादपों में पाया जाने वाला एक अनुकूलन

जिसके अंतर्गत पुमंग व जायांग के मध्य विशिष्ट प्राकृतिक संरचनात्मक अवरोध पाया जाता है। जैसे-

- 💠 आक में परागकण पॉलिनिया के रूप में।
- 5. अनुमील्यता क्या है? उदाहरण दीजिए।

उत्तर यह स्वपरागण हेतु अनुकूलन है, जिसमें पुष्प के जननांग (पुमंग - जायांग) सदैव दलों द्वारा ढ़के रहते है। उदाहरा - वायोला, जन्कस।

- 6. बहुनलिकीय परागकण से क्या तात्पर्य है?
- उत्तर परागकण के अंकुरण के समय बाह्यचोल (Exine) फट जाता है व अतंश्चोल परागनिलका के रूप में बाहर निकल जाता है। यदि एक से अधिक परागनिलकाएँ विकसित हो तो उसे बहुनिलकीय परागकण कहते हैं। उदाहरण – माल्वेसी कुल के पादप सदस्य।
- 7. लघुबीजाणु चतुष्क में चारों लघुबीजाणुओं की भित्ति किस पदार्थ द्वारा आपस में जुड़ी होती है?

उत्तर कैलोज

- भ्रूणोद्भव की परिभाषा बताइए।
- उत्तर युग्मनज से भ्रूण के विकास की प्रक्रिया को भ्रूणोद्भव कहते है।
- 9. बोरावस्त्रीकरण किसे कहते है?
- उत्तर वांछित परागण क्रिया के अंतर्गत विपुंसन के बाद पुष्प को सैलुलोज से निर्मित थैली द्वारा ढ़कना ही बोरावस्त्रीकरण है।
- 10. पुष्पीय पादपों में भ्रूणकोश की सूत्रगुणिता क्या होती है? उत्तर अगुणित (n)
- 11. पॉलीगोनम भ्रूणकोश में कोशिकीय व्यवस्था समझाइए।
- उत्तर पॉलीगोनम भ्रूणकोश अगुणित, 7 कोशिकीय व 8 केंद्रकीय संरचना है।

निभाग + केंद्र +बीजाण्डद्वार कोशिकीय व्यवस्था = 3 + 1 + 3

12. परागकोशों के स्फुटन हेतु लघुबीजाणुधानी की भित्ति का कौनसा स्तर उत्तरदायी होता है?

उत्तर एण्डोथीसियम

- 13. अनिषेकजनन से आपका क्या अभिप्राय है?
- उत्तर अनिषेचित अण्ड कोशिका द्वारा भ्रूण का विकास, अनिषेकजनन कहलाता है। अनिषेकजनन द्वारा अगुणित संतति उत्पन्न होती है।

लघुत्तरात्मक प्रश्नः-

परागकण हानिकारक प्रभाव दर्शाते है। कैसे?

5.

उत्तर

उत्तर परागकण कुछ अतिसंवेदी व्यक्तियों हेतु प्रतिजन के रूप में कार्य करते है तथा व्यक्ति जब इनके सम्पर्क में आता है तो उसका प्रतिरक्षा तंत्र सिक्रय हो जाता है। जिसके फलस्वरूप कुछ लक्षण जैसे- छींके आना, त्वचा का लाल होना आदि लक्षण प्रकट होते है। इसे पराग एलर्जी कहते है।

इस प्रकार कुछ विशेष पादपों के परागकण जैसे-पार्थेनियम (गाजर घास), ज्वार आदि मानव में पराग एलर्जी उत्पन्न करते है।

2. लघुबीजाणुधानी की पोषक परत के प्रकार व कार्य लिखिए।

उत्तर टेपीटम- लघुबीजाणुधानी की पोषक परत का कार्य करती है।

टेपीटम के प्रकार :-

- 1. अमीबीय टेपीटम उदाहरण टाइफा
- स्त्रावी टेपीटम उदाहरण अधिकांश आवृतबीजी पादप

कार्य:- टेपीटम की कोशिकाएँ आकार में बड़ी, सुस्पष्ट केंद्रक युक्त व सघन जीवद्रव्य वाली होती है जिसमें पर्याप्त संचित भोज्य पदार्थ होते हैं जो विकासशील परागकणों को पोषण प्रदान करती है।

द्विनिषेचन - त्रिकसंलयन को समझाइए।

उत्तर परागनिलका द्वारा भ्रूणकोश में दो अगुणित व अचल नर युग्मक स्थानांतरित किये जाते है। एक नर युग्मक केंद्रीय कोशिका में उपस्थित द्वितीयक केंद्रक के साथ जबिक दूसरा नर युग्मक अण्ड कोशिका के साथ संलयित होता है। परिणामस्वरूप त्रिगुणित प्राथमिक भ्रूणपोष केंद्रक (PEN) व द्विगुणित युग्मनज का निर्माण होता है।

भ्रूणपोष के विभिन्न प्रकार एवं उदाहरण लिखिए।

उत्तर भ्रूणपोष के प्रमुख प्रकार निम्न हैं-

4.

- केन्द्रकीय भ्रूणपोष:-इसे तरल भ्रूणपोष भी कहते है।
 उदाहरण:- नारियल, ऑक्सीस्पोरा।
- 2. कोशिकीय भ्रूणपोष:- उदाहरण:- कुकुरबिटेसी कुल के पादप सदस्य।
- 3. हेलोबियल भ्रूणपोष:- उदाहरण :- एकबीजपत्री पादप

चलाजोर्गेमी व पोरोगैमी को सचित्र समझाइए।

चलाजोगेमी:- इसके अंतर्गत परागनिलका बीजाण्ड में निभागीय छोर से प्रवेश करती है। उदाहरण:- कैजुराइना। पोरोगेमी:- इसके अंतर्गत परागनिलका अण्डाशय में प्रवेश करने के बाद बीजाण्ड की सतह से सटकर वृद्धि करते हुए बीजाण्ड द्वारा से बीजाण्ड में प्रवेश करती है। उदाहरण:-अधिकांश आवृतबीजी पादप।

6. फ्लोरीकल्चर क्या है? एक प्रारूपिक पुंकेसर का नामांकित चित्र बनाइए।

फ्लोरीकल्चर - बागवानी विज्ञान (Horticulture) की एक शाखा, जिसके अंतर्गत फूलों वाले एवं सजावटी पौधों की खेती की जाती है।

प्रारूपिक पुंकेसर का नामांकित चित्र:-

उत्तर

निषेचन पूर्व घटनाओं को सूचीबद्ध कीजिए। एक पोलीगोनम भ्रूणकोश की संरचना का नामांकित चित्र बनाइए।

उत्तर निषेचन पूर्व घटनाएँ -

- 1. लघुबीजाणुजनन लघुबीजाणुधानी में स्थित लघुबीजाणु मातृ कोशिकाएँ अर्द्धसूत्री विभाजन द्वारा अगुणित लघु-बीजाणुओं का निर्माण करती है जो आगे जाकर परागकणों में परिवर्तित होती है।
- 2. नरयुग्मकोद्भिद का विकास परागकण में स्थित अगुणित केंद्रक क्रमिक विभाजनों (सूत्री)के फलस्वरूप परिपक्व नर युग्मकोद्भिद का विकास होता है जिसमें दो नर युग्मक होत है।
- 3. गुरुबीजाणुजनन गुरुबीजाणुधानी (बीजाण्ड)में गुरुबीजाणु मातृ कोशिका अर्द्धसूत्री विभाजन द्वारा चार (4)अगुणित गुरुबीजाणु का निर्माण करती है।
- 4. मादा युग्कोद्भिद का विकास- एक बीजाणुक परिवर्धन के अंतर्गत एक गुरुबीजाणु क्रमिक तीन सूत्री विभाजनों के फलस्वरूप 7- कोशिकीय, 8- केन्द्रकीय भ्रूणकोश / मादा युग्मकोद्भिद (पोलीगोनम प्रकार) का निर्माण करता है।
- 5. परागण परागकोशों के स्फुटन के पश्चात् मुक्त परागकण अजैविक (वायु,जल) अथवा जैविक (कीट, पक्षी, चमगादड़, घोघा) कारकों द्वारा संगत पुष्प की वर्तिकाग्र तक पहुँचते है जिसे परागण कहते हैं।
- 6. परागकण का अंकुरण पराग-स्त्रीकेसर संकर्षण के फलस्वरूप सुसंगत परागकण अंकुरित होकर परागनिलका का निर्माण करते है जो दोनों नर युग्मकों को निषेचन हेतु भ्रूणकोश तक पहुँचाती है।

8. द्विबीजपत्री भ्रूण परिवर्धन की विभिन्न प्रावस्थाओं को केवल चित्र द्वारा दर्शाइए।

आदि

9. उन्मील व अनुन्मील परागणी पुष्प में अंतर लिखिए।

उत्तर उन्मील परागणी पुष्प अनुन्मील परागणी पुष्प

1. इन पुष्पों में नर एवं 1. इस प्रकार के पुष्पों से पुमंग मादा जननांग (पुमंग व व जायांग सदैव दलों से ढ़के रहते जायांग) दलों से ढ़के है।

नहीं होते।
2. इन पुष्पों में स्व तथा 2. इन पुष्पों में केवल स्वपरागण
परपरागण दोनों संभव है। (स्वयुग्मन) होता है।
उदा. सरसो, गुड़हल उदा. वायोला, जंकस आदि।

परागण को परिभाषित कीजिए। परागण का महत्व लिखिए।

उत्तर परागण:- परिपक्व परागकोशों के स्फुटन के फलस्वरूप मुक्त परागकणों का पुष्प की वर्तिकाग्र (जायांग)तक पहुँचना, परागण कहलाता है।

महत्व:- 1. निषेचन क्रिया के लिए अतिआवश्यक।

- परागण के पश्चात ही निषेचन होता है जिससे भ्रूणपोष, बीज आदि का निर्माण होता है।
- 3. फल निर्माण की क्रिया भी परागण का ही परिणाम है। इस प्रकार परागण द्वारा ही विशेष पादप जाति अपना अस्तित्व बनाए रख पाती है अर्थात् परागण पादपों में वृद्धि एवं परिवर्धन हेतु अतिमहत्वपूर्ण प्रक्रिया है।

प्रारूपिक द्विलिंगी पुष्प के आवश्यक व सहायक चक्रों को चित्र द्वारा दर्शाइए।

12. अंकुरित परागकण को चित्र द्वारा दर्शाइए।

उत्तर

अध्याय **2**

मानव जनन

अंक भार = 4, वस्तुनिष्ठ-1 (½ अंक), रिक्त स्थान-1 (½ अंक), दीर्घउत्तरात्मक - 1(3 अंक)

वस्तुि	नेष्ठ प्रश्नः-						(स)	
1.	जरायुज प्राणी है-			9.	मादा बाह्य जननांगों के	भाग हैं-		
	(अ) मेंढ़क	(ब) सर्प			(i) अण्डाशय	(ii) स्तन ग्रंथियाँ		
	(स) चिड़िया				(iii) मोन्स प्यूबिस	(iv) लेबिया माइनोरा		
	(द) उपरोक्त में से को	ई नहीं	(द)		(v) क्लिटोरिस			
2.	मानव के शुक्राणु में अ	लिंग सूत्र होते हैं-			(अ) (i), (ii) व (iii)			
	(अ) 21	(অ) 22			(অ) (ii), (iii) ল (iv)			
	(刊) 23	(द) 24	(অ)		(स) (iii), (iv) व (v)			
3.	शुक्राणु एवं अण्डाणु	का संलयन होता है-			(द) (ii), (iii) व (v)		(स)	
	(अ) गर्भाशय में	(ब) योनि में		10.	निम्न में से किस हार्मीन व	की ऋतुस्राव में कोई भूमि	का नहीं	
	(स) फैलोपियन नलिव	हा में			होती-	.		
	(द) उपरोक्त में से को	ई नहीं	(स)		(अ) LH	(অ) FSH		
4.	शुक्रजनन नलिका में प	पोषक कोशिकाएँ पायी जा	ती हैं-		(स) TSH			
	(अ) लीडिंग कोशिका	एँ (ब) पुटिका कोशिकाएँ			(द) एस्ट्रॉडायल (Estra	idiol)	(स)	
	(स) सर्टोली कोशिकार	एँ (द) क्रोमाफिन कोशिका	ाएँ(स)	11.	रजोनिवृत्ति पश्चात् मूत्र	में निम्न हार्मोन की नि	ष्क्रासित	
5.	प्रोस्टेट ग्रंथि के स्त्राव	का कार्य है-			मात्रा बढ़ जाती है-			
	(अ) शुक्राणुओं को आ	कर्षित करना			(अ) FSH	(অ) TSH		
	(ब) शुक्राणु क्रियाशील	ाता को कम करना			(स) STH			
	(स) शुक्राणु क्रियाशील	नता को बढ़ाना			(द) उपरोक्त में से कोई	नहीं	(अ)	
	(द) उपरोक्त में से को	ई नहीं	(स)	12.	, .,	ो अंतः स्तर की मरम्मत व	क्रा कार्य	
6.	प्रोस्टेट ग्रंथि के	नीचे स्थित होती है-			करता है-			
	(अ) गुबरनेकुलम	(ब) शुक्राशय			(अ) एस्ट्रोजन			
	(स) अधिवृषण	(द) बल्बोयूरोथ्रल ग्रंथि	(ब)		(स) प्रोलैक्टिन	(द) FSH	(अ)	
7.	वृषणकोष में तापमान	शरीर के ताप सेक	म होता	13.	मादा में रजोनिवृत्ति की	आयु है-		
	है -				(अ) 15 वर्ष	(অ) 25 वर्ष		
	(अ) 2°C	(অ) 4°C			(स) 50 वर्ष	(द) 75 वर्ष	(स)	
	(स) 6⁰С	(द) 8°C	(अ)	14.		र्िकीय परिपक्वता, गति	।शीलता	
8.	मानव वृषण के लिए वि	नेम्न में से सही है-			व निषेचन क्षमता में वृश्वि			
	(अ) ग्राफियन पुटिका,	. सर्येली कोशिका, लीडिग व	क्रोशिका		(अ) शुक्रजनन नलिका	•		
	(ब) ग्राफियन पुटिका,	सर्टोली कोशिका, शुक्रजनन	नलिका		(स) योनि	(द) वृषण जालक	(অ)	
	(स) सर्येली कोशिका, शुक्रजनन नलिका, लीडिंग कोशिका			15.	युग्मनज में सूत्री विभाजनों के फलस्वरूप निर्मित होने वाली			
	(द) ग्राफियन पुटिका,	लीडिग कोशिका, शुक्रजनन	नलिका		8-16 कोशिकीय ठोस	सहात कहलाता ह-		

शेखा	त्राटी मिशन-100 ├──				सत्र : 2023-24
	(अ) ब्लास्टुला	(ब) गेस्ट्रूला		8.	शुक्राणु शीर्ष के अग्र भाग में स्थित एक्रोसोम का निर्माण
	(स) मोरूला				कोशिकांग द्वारा किया जाता है।
	(द) उपरोक्त में से कोई	नहीं	(स)		(गॉल्जीकाय)
16.	शुक्राणु का वह भाग जो भूमिका रखता है-	अण्डाणु को भेदने में म	ाहत्वपू र्ण	9.	शुक्राशयी तरल में प्रोस्टाग्लैंडिन्स, स्कंदक प्रोटीन एवं शर्करा भी पायी जाती है। (फ्रक्टोस)
	(अ) एलोसोम	(ब) ऑटोसोम		10.	मादा (मानव) में प्रथम बार ऋतुस्त्राव होने को
	(स) एक्रोसोम	(द) नीबेनकर्न	(स)		कहते हैं।(रजोदर्शन)
17.	निम्न में से कौनसा हार्मो स्त्रावित नहीं किया जात		टा) द्वारा	11.	अण्डोत्सर्ग के दौरान LH वदोनों का स्तर अधिकतम हो जाता है। (FSH)
	(अ) ह्यूमन कॉरियोनिक	गोनेडोट्रॉफिन		12.	मानव में गर्भावधिदिवस की होती है।(280)
	(ब) प्रोलैक्टिन			13.	शुक्राणु के मध्य भाग में पाये जाते हैं जो इसे
	(स) एस्ट्रोजन		(অ)	15.	गतिशीलता हेतु ऊर्जा प्रदान करते हैं।(माइटोकॉण्ड्रिया)
18.	भ्रूण की प्रथम गतिशी गर्भावस्था के कौनसे मा	ह में देखे जा सकते हैं-	पर बाल	14.	अंडजनन क्रिया के अंतर्गत एक द्विगुणित कोशिका अंडाणु उत्पन्न करती है।(एक)
	(अ) तीसरे माह	(ब) चौथे माह	, ,	15.	द्वितीयक ऊसाइट अपने चारें ओरनामक नयी
	(स) पॉंचवे माह		(स)		झिल्ली का निर्माण करती है।(जोना पेल्यूसिडा)
19.	hCG, hPL व रिलैक्सि (अ) यौवनारंभ के दौरान	(ब) केवल सगर्भता के		16.	वीर्य का निर्माण शुक्राशयी तरल व द्वारा होता है।(शुक्राणुओं)
	(स) रजोदर्शन के समय,				• •
	(द) ऋतु स्त्राव चक्र के व		(ब)	17.	रोपण उपरान्त पोषकोरक (ट्रोफोब्लास्ट) पर अंगुलीनुमा प्रवर्ध दिखाई देते हैं, जिन्हेंकहते हैं।
20.	भ्रूण को अपरा से जोड़ने	वाली संरचना है-			
	(अ) एम्नियॉन झिल्ली	(ब) कॉरियॉन झिल्ली			(कोरियॉनिक विलाई ⁄ जरायु अंकुरक)
रित्रत र	(स) विटेलाइन झिल्ली थानों की पूर्ति कीजिए -	•	(द)	18.	प्रत्येक वृषण में लगभग कक्ष होते हैं। जिन्हें वृषण पालिका (टेस्टीकुलर लोब्यूल्स) कहते हैं।(250)
	मानव में गर्भाशय की उ		दोती है।	19.	यौवनारंभ के समय हाइपोथैलेमस द्वारा स्त्रावित
	(उल्टी नाशपाती समान	`)		17.	हार्मोन में पर्याप्त वृद्धि होती है।(गोनेडोट्रॉपिन मोचक / GnRH
2.	मासिक धर्म के दौरान ग		स्तर	2.2	
_	में क्रमिक परिवर्तन होते			20.	मानव में एक माह की सगर्भता के बाद भ्रूण का निर्मित होता है।(हृदय)
3.	कोशिकाएँ पोषण प्रदान करती हैं।(. •	ुआ का	दीर्घ उ	त्तरात्मक प्रश्नः-
4.	मॉसपेशियों से निर्मित	त गर्भाशय के मध्य	स्तर को	1.	(i) अण्डजनन से क्या तात्पर्य है?
	कहते [']	· ·			(ii) अण्डजनन क्रिया को रेखाचित्र द्वारा दर्शाइए।
5.	अण्डवाहिनी का कीपनु				
	स्थित होता है,				(iii) अण्डजनन व शुक्रजनन की तुलना कीजिए।
6.	हार्मोन ग है।(ऑक्सीटॉसिन)	ार्भाशयी संकुचन को प्रेनि	रेत करता	उत्तर	(i) अण्डजनन :- मादा में अण्डाशय की द्विगुणित कोशिका उगोनिया से अगुणित अण्डाणु निर्माण की क्रिया को अण्डजनन
7.	परिपक्व मादा युग्मक-अ	•	क्रेया को		कहते है।
	कहते हैं।	।(अण्डजनन)			(ii) अण्डजनन क्रिया का रेखाचित्र :-

(iii) अण्डजनन व शुक्रजनन का तुलनात्मक विवरण

अंडजनन

शुक्रजनन

- 1. यह क्रिया मादा में
- 2. यह क्रिया नर में वृषण में

अण्डाशय में होती है। होती है।

2. इसके फलस्वरूप मादा 2. इसके फलस्वरूप नर युग्मक अण्डाणु का निर्माण होता शुक्राणु बनते है।

है ।

3. मादा में अंडजनन की 3. नर में शुक्रजनन क्रिया निश्चित समयावधि

जीवनपर्यन्त चलती रहती है।

(रजोनिवृति)के बाद बंद

हो जाती है।

- अण्डाणु गतिहीन होते
- 4. अंडजनन के फलस्व- 4. शुक्रजनन के फलस्वरूप निर्मित रूप निर्मित मादा युग्मक- शुक्रजनन गतिशील होते है।

- 5. अंडजनन की वृद्धि
- 5. शुक्रजनन की वृद्धि प्रावस्था

प्रावस्था बडी होती है। छोटी होती है।

अण्डाशय के अनुप्रस्थ काट (T.S.) का नामांकित चित्र 2. बनाइए। उन हार्मोनों के नाम लिखो जो अण्डोत्सर्ग व कार्पस ल्यूटीयम के परिवर्धन को प्रेरित करते है।

अण्डाशय : अनुप्रस्थ काट :-उत्तर

- अण्डोत्सर्ग को प्रेरित करने वाले हार्मोन
- 1. ल्यूटीनाइजिंग हार्मीन (LH)
- 2. फॉलीक्यूलर स्टीमुलेटिंग हार्मीन (FSH)
- 3. एस्ट्रोजन
- कॉपर्स ल्यूटीयम के परिवर्धन को प्रेरित करने वाले हार्मोन-
- 1. ल्यूटीनाइजिंग हार्मीन (LH)
- 2. प्रोजेस्टेरॉन

प्रसव से क्या तात्पर्य है? प्रसव क्रिया के नियमन में हार्मोन 3. की भूमिका की व्याख्या कीजिए।

प्रसव:- सगर्भता की अवधि पूर्ण करने के फलस्वरूप गर्भ उत्तर (नवजात शिशु) का योनि से होते हुए बाहर निकलने की क्रिया को प्रसव (शिश् जनन) कहते है।

> प्रसव की क्रियाविधि:- प्रसव वास्तव में तंत्रिका तंत्र एवं अंत: स्त्रावी तंत्र की सम्मिलित प्रक्रियाओं का परिणाम है। पूर्ण विकसित भ्रूण (गर्भ) एवं अपरा प्रारम्भिक तौर पर गर्भाशय में संकुचन (हल्के प्रकार के)प्रेरित करते हैं, इन्हें गर्भ प्रतिवर्त (FER) कहते हैं। ये माता की पीयूष ग्रंथि को सिक्रिय कर ऑक्सीटोसिन के स्त्राव को प्रेरित करते हैं। ऑक्सीटोसिन गर्भाशयी पेशियों पर कार्य करता है परिणामस्वरूप संकुचन की क्रिया तीव्र हो जाती है जो ऑक्सीटोसिन के और अधिक स्त्राव को प्रेरित करती है। इस प्रकार गर्भाशयी संकुचन धीर-धीरे बढ़कर तीव्र व तीव्रतर होने लगते है। तीव्र गर्भाशयी संकुचनों के फलस्वरूप शिशु गर्भाशय से जनन

नाल (गर्भाशयी ग्रीवा + योनि)द्वारा बाहर निकल आता है अर्थात् प्रसव क्रिया संपन्न हो जाती है।

Note :- मानव में शिशु जन्म (प्रसव) के पश्चात अपरा भी जनन नाल से होते हुए बाहर निकल जाती है।

4. शुक्रजनन क्रिया को विस्तार से समझाइए।

उत्तर

शुक्रजनन (Spermatogenesis) - नर में (वृषण) शुक्राणुओं की क्रिया को शुक्रजनन कहते हैं। इसके फलस्वरूप नर युग्मक के रूप में अगुणित गतिशील शुक्राणुओं का निर्माण होता है।

क्रियाविधि – शुक्रजनन की क्रिया को दो प्रावस्था में बांटा गया है–

- (i) शुक्राणुपूर्वी (Spermatid) का निर्माण
- (ii) शुक्रकायांतरण (Spermateogenesis)
- (i) शुक्राणुपूर्वी का निर्माण इसके अंतर्गत वृषण की जनन उपकला में स्थित प्रारम्भिक कोशिकाओं (Primordial Germ Cell-PGC) द्वारा अचल, गोल व अगुणित (n) शुक्राणुपूर्वी (spermatid) निम्न चरणों में बनाए जाते हैं-
- (a) गुणन
- (b) वृद्धि
- (c) परिपक्वन

- (a) गुणन (Multipication) जनन उपकला (वृषण) में स्थित PGC में सतत् समसूत्री विभाजन होते हैं। फलस्वरूप 4 स्पर्मेटोगोनिया निर्मित होती है। चार में से एक स्पर्मेटोगोनिया आगे विभाजन नहीं करती है। जबिक शेष तीन स्पर्मेटोगोनिया विभाजनों द्वारा 6,12, 24, 48, स्पर्मेटोगोनिया बनाती है।
- (b) वृद्धि (Growth) 2 चरणों में पूर्ण -
- (1) वृद्धि प्रावस्था I. स्पर्मेटोगोनिया आकार में वृद्धि कर प्राथमिक स्पर्मेटोसाइट (2n) बनाती है।
- (2) वृद्धि प्रावस्था II. प्रत्येक प्राथमिक स्पर्मेटोसाइट (2n) में अर्द्धसूत्री विभाजन -I होता है तो दो अगुणित (n) द्वितीय स्पर्मेटोसाइट का निर्माण होता है।
- (c) परिपक्वन (Moturation) इसमें द्वितीयक स्पर्मेटोसाइट (Spermatocyte, n) में अर्द्धसूत्री विभाजन II संपन्न होता है, फलस्वरूप, प्रत्येक द्वितीयक स्पर्मेटोसाइट द्वारा चार, अगुणित (n) गोलाकार, अचल, शुक्राणुपूर्वी (Spermatid) स्पर्मेटिड का निर्माण होता है।

इस प्रकार एक स्पर्मेटोगोनिया (2n) द्वारा अंत में 4 स्पर्मेटिङ (शुक्राणु पूर्वी, n) का निर्माण होता है।

- (ii) शुक्रकायांतरण (Spermateogenesis) अगुणित (n), अचल, गोलाकार शुक्राणुपूर्वी (Spermatid) में आकारिकी व कार्यिकीय परिवर्तनों के फलस्वरूप गतिशील, अगुणित ,एक कोशिकीय शुक्राणु (Sperm) का निर्माण होता है। इसे शुक्रकायांतरण कहते है।
- मादा जनन तंत्र की आरेखीय काट का नामांकित चित्र बनाते हुए इसकी संरचना समझाइए।

मानव मादा जनन तंत्र को निम्न भागों में बाँटा गया है-

उत्तर

- 1. मुख्य अंग अण्डाशय (Ovary)
- 2. सहायक अंग गर्भाशय (Uterus), अंडवाहिनी (Oviduct), योनि (Vagina), भग (Vulva)
- 1. मुख्य अंग-
- (A) अंडाशय (Ovary) ये संख्या में दो होते है। अण्डाशय बादाम के आकार की सफेद गुलाबी संरचनाएं है। ये उदर गृहा के श्रोणि भाग में स्थित होते हैं।
- अण्डाशय उदरगुहा में तंतुनुमा संरचना द्वारा जुड़े होते हैं जिसे मीजोवेरियम (अंडाशयधर) कहते हैं।
- 2. सहायक अंग -
- (A) अंडवाहिनी (Oviduct) यह एक नलीनुमा संरचना है, जिसकी संख्या दो होती है। सामान्यतया इसके तीन भाग होते है-
- (i) इन्फंडिबुलम (Infundibulum) अण्डाशय की ओर स्थित कीपनुमा चौड़ा भाग होता है जहां सूक्ष्म अंगुलीनुमा प्रवर्ध पाए जाते हैं जिन्हें फिम्ब्री कहते हैं। फिम्ब्री अण्डोत्सर्ग द्वारा त्यागे गये अण्डाणु को अंडवाहिनी में पहुँचाते हैं जिसके लिए इनमें पक्ष्माभीय गित होती है।
- (ii) एम्पुला (Ampulla) इन्फंडिबुलम के ठीक पीछे की ओर स्थित तुलनात्मक चौड़ा भाग एम्पुला होता है। एम्पुला व इन्फडिबुलम के संयोजन स्थल पर निषेचन होता है जिसे फैलोपियन निलका (Fallopian Tube) भी कहते है।
- (iii) इस्थमस (Isthamus) यह तुलनात्मक कम चौड़ा, लंबा व नलिकाकार भाग है जो गर्भाशय में खुलता है।
- (B) गर्भाशय (Uterus) यह एक थैलीनुमा संरचना है जो उल्टी रखी नाशपाती के आकार की होती है। गर्भाशय की भित्ति में 3 स्तर होते है–
- (a) बाह्य स्तर पेरीमेट्रिमयम (Perimetrium)

- (b) मध्य स्तर मायोमेट्रियम (Myometrium)
- (c) आंतरिक स्तर एण्डोमेट्रियम (Endometrium) गर्भाशय के दो भाग होते है-
- गर्भाशयी गुहा- यह गर्भाशय का मुख्य भाग है जिसमें अण्डवाहिनियाँ खुलती है। इसका अंत: स्तर व भ्रूणीय झिल्लियाँ मिलकर प्लेसेण्टा (अपरा) बनाती है। इसी भाग में भ्रूण का परिवर्धन पूर्ण होता है।
- ग्रीवा भाग- यह गर्भाशय का तुलनात्मक संकरा भाग है इसे सेरिविक्स कहते है। ग्रीवा भाग में उपस्थित संकरी गुहा को सर्वाइकल केनाल (Cervical Canal) कहते हैं जो प्रसव के दौरान नवजात शिशु को योनि तक पहुँचने हेतु मार्ग प्रदान करता है।
- (C) योनि (Vagina) गर्भाशय का ग्रीवा भाग योनि में खुलता है। यह निलकाकार लंबी संरचना है जिसमें मैथुन क्रिया के दौरान नर शिश्न की सहायता से वीर्य स्खिलत करता है।
- (D) भग (Vulva) मादा जनन तंत्र के अंतर्गत बाह्य संरचना को भग कहते हैं। यह अनेक भागों में मिलकर बना होता है। जो निम्न है–
- (i) लेबियो मेजोरा (Labio Majora) एक जोड़ी, बड़ी होंठनुमा संरचना जो लेबिया माइनोरा को घेरे रहती है।
- (ii) लेबियो माइनोरा (Labio Minora) एक जोड़ी छोटी होंउनुमा संरचनाएँ है जो प्रघाण (Vestibule) को ढ़कती है।
- (iii) प्रघाण (Vestibule) यह दारारनुमा भाग है जिसमें मूत्र एवं जनन छिद्र खुलते है।
- (iv) भग शिश्न (Clitoris) यह मादा में शिश्न का अवशेष है जिस पर स्पर्श कणिकाऐं अत्यधिक संख्या में पाई जाती है। अत: यह अधिक संवेदी होता है।

जनन खास्थ्य

अंकभार - 02, वस्तुनिष्ठ प्रश्न - 1 ($\frac{1}{2}$ अंक), लघुत्तरात्मक प्रश्न - 1 ($1\frac{1}{2}$ अंक)

वस्तुनिष	ठ प्रश्न:-			प्र. 9.	निम्नलिखित में से किन गर्भनिरोधक तरीकों में ह				
प्र. 1.	परिवार नियोजन कार्यव्र	<mark>हम की शुरूआत भारत</mark>	में कब		भूमिका अदा करता है।				
	हुई?				(अ) गोलियां, आपातकालीन गर्भनिरोधक, रोध विधियां				
	(अ) 1951	(অ) 1952				ोलिया, आपातकालिन गर्भी	नेरोधक		
	(स) 1961	(द) 1950	(왱)		(स) रोध विधियां, स्तनप				
प्र. 2.	उल्बवेधन (ऐमीनोसैंटेरि	प्रस) क्या है।			(द) कॉपर-टी, गोलिया,अ	गपातकालिन गर्भनिरोधक	(ब)		
	(अ) बध्यता परीक्षण	(ब) गर्भनिरोधक परीक्षण	Т	प्र. 10.	जो दम्पति बच्चे के इच	•	न प्राप्त		
	(स) भ्रूण में आनुवांशिक	विकार का पता लगाना			करने का सर्वोत्तम उपाय	-			
	(द) गर्भपात परीक्षण		(स)		(अ) टेस्ट ट्यूब बेबी				
प्र. 3.	मुखीय गर्भनिरोधक निम्	न में से किसके संयोजन से	बनता			(द) कृत्रिम वीर्य सेंचन			
	है।			11.	यौन संचारित रोगों के स	ाही विकल्प का चयन क	रो।		
	(अ) प्रोजेस्टेरॉन-एस्ट्रोज	न (ब) वेसोप्रेसिन			(अ) सुजाक, मलेरिया,	जननिक, परिसर्प			
	(स) रिलेक्सीन	(द) ऑक्सीटोसिन	(अ)		(ब) AIDS, मलेरिया, प	काइलेरिया			
प्र. 4.	आपातकालिक गर्भनिर	धिक मैथुन के कितने घ	ण्टे के		(स) कैंसर, AIDS, सि	फिलिस			
	भीतर लेनी चाहिए-	•			(द) सुजाक, सिफिलिस	, जननिक परिसर्प	(द)		
	(अ) 48 घण्टे	(ब) 72 घण्टे		12.		त 16 से अधिक कोरक	खण्डों		
	(स) 24 घण्टे	(द) 96 घण्टे	(ब)		वाले भ्रूण को स्थानान्ता				
प्र. 5.	भारत में सगर्भता का चि	त्रिकत्सीय समापन के दुस्	त्पयोग		(अ) झालर में	(ब) ग्रीवा में			
	को रोकने के लिए कानु	न कब बनाया गया।			(स) गर्भाशय में	(द) फैलोपियन नली	(स)		
	(अ) 1972	(ন্ব) 1971		13.	सेहली है-				
	(स) 1970	(द) 1975	(ब)		(अ) महिलाओं के लिए	मुखीय गर्भनिरोधक			
प्र. 6.	निम्न में से कौनसा यौन	संचरित रोग है-			(ब) महिलाओं के लिए	बंध्यकरण की शल्य विधि			
	(अ) यकृतशोध-ए	(ब) यकृतशोध -बी			(स) नरों में बंध्यकरण व	ही शल्य विधि			
	(स) अ एवं ब दोनों	(द) इनमें से कोई नहीं	(ब)		(द) महिलाओं के लिए	अन्त: गर्भाशयी युक्ति	(왱)		
प्र. 7.	स्तनपान अनार्तव विधि	प्रसव के बाद कितने म	ाह की	14.	चिकित्सीय सगर्भता सम	गपन (MTP) को कितन्	ने सप्ताह		
	अवधि तक कारगार मान				तक सुरक्षित माना जाता	'है।			
	(अ) 24 माह	(ब) 12 माह			(अ) 8 सप्ताह	(ब) 12 सप्ताह			
	(स) 6 माह	(द) 3 माह	(स)		(स) 18 सप्ताह	(द) 6 सप्ताह	(ब)		
प्र. 8.	वर्तमान समय में भारत में	गर्भनिरोधक की सर्वाधिव	ह मान्य	15.	कॉपर - T का कार्य क	या है।			
	विधि है।				(अ) गेस्ट्रुलेशन रोकना	(ब) निषेचन रोकना			
	(अ) ट्यूबेक्टॉमी	(ब) डायफ्राम			(स) उत्परिवर्तन रोकना	(द) विदलन रोकना	(অ)		
	(स) अन्त:गर्भाशयी युत्ति	ज्यां(द) सर्वाइकल कैप	(स)	16.	परखनली शिशु उत्पन	करने के लिए भ्रूण को र	क्रौनसी		

(अ)

अवस्था में स्त्री के शरीर में रोपित किया जाता है।

- (अ) 32 कोशिकीय अवस्था में
- (ब) 64 कोशिकीय अवस्था में
- (स) 100 कोशिकीय अवस्था में
- (द) 164 कोशिकीय अवस्था में

लघुउत्तरात्मक प्रश्न

प्र. 1. विश्व स्वास्थ्य संगठन (WHO) के अनुसार जनन स्वास्थ्य क्या है।

उत्तर WHO के अनुसार जनन स्वास्थ्य का अर्थ जनन के सभी पहलुओं सहित एक सम्पूर्ण स्वास्थ्य अर्थात शारीरिक, भावनात्मक, व्यवहारात्मक तथा सामाजिक स्वास्थ्य है।

प्र. 2. सहेली नामक गर्भनिरोधक की खोज किस संस्थान ने की?

उत्तर केन्द्रीय औषध अनुसंधान संस्थान (CDRI) लखनऊ

प्र. 3. एक आदर्श गर्भनिरोधक की दो विशेषताएँ लिखो-

उत्तर (i) उपयोगकर्त्ता के कामेच्छा, प्रेरणा एवं मैथुन में बाधक न हो।

(ii) आसानी से उपलब्ध होने वाला हो।

प्र. 4. प्राकृतिक गर्भनिरोधक विधियो के नाम लिखो।

उत्तर (i) आविधक संयम (माहवारी के 10 से 17वें दिन के बीच मैथुन से बचना)

- (ii) बाह्य स्खलन
- (iii) स्तनपान अनार्तव (प्रसव के बाद 6 माह तक गर्भधारण के अवसर शुन्य होते है)

प्र. 5. रोध (बैरियर) गर्भनिरोधक विधियों के नाम लिखों।

उत्तर इस विधि से अण्डाणु एवं शुक्राणु का भौतिकरूप से मिलने से रोका जाता है। ये निम्न हैं। (i) कण्डोम (ii) डायफ्रॉम (iii) गर्भाशय ग्रीवा टोपी (iv) वॉल्ट

प्र. 6. अन्तः गर्भाशयी युक्ति (आई यू डी) क्या है।

उत्तर ये गर्भनिरोधक युक्तियां योनि मार्ग से गर्भाशय में लगाई जाती है। ये निम्न प्रकार की होती है।

- (i) औषधरहित आई यू डी लिप्पेस लूप
- (ii) तांबा मोचक आई यू डी कॉपर टी, कॉपर -7, मल्टीलोड 375 कॉपर टी
- (iii) हॉर्मोन मोचक आई यू डी प्रोजेस्टासर्ट, एल एन जी -20

प्र. 7. अन्तः गर्भाशयी युक्ति कॉपर-टी किस प्रकार गर्भनिरोधन करती है?

उत्तर कॉपर-टी से गर्भाशय में कॉपर आयन मोचित होते है ये आयन शुक्राणुओं की गतिशीलता व निषेचन क्षमता को कम कर देते है।

प्र. 8. जो औरते गर्भावस्था में देरी या बच्चों के जन्म में अन्तराल चाहती है, उनके लिए कौनसी युक्ति आदर्श गर्भिनिरोधक है ?

उत्तर आई. यू. डी. युक्तियाँ

प्र. 9. गर्भिनिरोध की शल्यक्रिया की विधियाँ कौन-कौनसी होती है।

उत्तर शल्यक्रिया विधियो को बंध्यकरण भी कहा जाता है। ये दो प्रकार की होती है।

- (i) शुक्रवाहक उच्छेदक (वासैक्टोमी)- पुरुषो में शुक्रवाहक को काटकर बांध दिया जाता है।
- (ii) निलका उच्छेदन (टूबैक्टोमी) महिलाओं में अण्डवाहिनी को काटकर बांधा जाता है।

प्र. 10. गर्भनिरोधको के दुष्प्रभाव के बारे में लिखो।

उत्तर गर्भनिरोधकों के दुष्प्रभाव – मतली, उदरीय पिड़ा, रक्तस्त्राव, अनियमित आर्तव चक्र आदि।

प्र. 11. चिकित्सीय सगर्भता समापन (MTP) क्या है?

उत्तर गर्भावस्था पूर्ण होने से पहले जानबूझकर या स्वैच्छिक रूप से गर्भ के समापन को प्रेरित गर्भपात या चिकित्सीय सगर्भता समापन कहते हैं। सगर्भता के 12 सप्ताह तक की अविध में करवाया जाने वाला सगर्भता समापन सुरक्षित माना जाता है।

प्र. 12. यौन संचारित रोग किसे कहते हैं।

उत्तर वे रोग जो मैथुन द्वारा संचारित होते है, उन्हें सामूहिक तौर पर यौन संचारित रोग (STD) कहते हैं। इन्हें रित रोग अथवा जनन मार्ग संक्रमण भी कहते हैं।

प्र. 13. यौन संचारित रोग के उदाहरण लिखों।

उत्तर सुजाक (गोनोरिया), सिफिलिस, हार्पीस, जनिक परिसर्प, क्लेमाइडियोसिस, ट्राइकोमोनिएसिस, लेंगिक मस्से, यकृतशोथ-बी ओर एड्स आदि प्रमुख यौन संचारित रोग के उदाहरण है।

प्र. 14. यौन संचारित रोगो से बचाव के दो उपाय लिखों।

उत्तर (i) किसी अनजान व्यक्ति के साथ यौन सम्बन्ध न रखना।

(ii) मैथुन के समय सदैव कण्डोम का इस्तेमाल करना।

प्र. 15.) बन्ध्यता किसे कहते है।

उत्तर दो वर्ष तक मुक्त या असुरक्षित सहवास के बावजूद गर्भधारण न हो पाने की स्थिति को बन्ध्यता कहते है। बन्ध्यता के शारीरिक, जन्मजात, औषधिक, प्रतिरक्षात्मक एवं मनोवैज्ञानिक आदि कारण हो सकते हैं। शेखावाटी मिशन-100

सत्र: 2023-24

प्र. 16. सहायक जनन प्रौधोगिकी (ART) किसे कहते हैं।

उत्तर ऐसी विशेष तकनीक जो बन्ध्य दम्पत्ति को सन्तान उत्पन्न करने में सहायता करती है, सहायक जनन प्रौधोगिकी कहलाती है।

प्र. 17. पात्रे निषेचन किसे कहते है।

उत्तर शरीर के बाहर लगभग शरीर के भीतर जैसी स्थितियों में निषेचन करवाना, पात्रे निषेचन कहलाता है। यह विधि टेस्ट ट्यूब बेबी कार्यक्रम के नाम से लोकप्रिय है।

प्र. 18. ZIFT (जाइगोट इंट्रा फैलोपियन ट्रांसफर) क्या है।

उत्तर यह पात्रे निषेचन में युग्मनज स्थानान्तरण की विधि है। इनमें युग्मनज या प्रारम्भिक भ्रूण (8 ब्लास्टोमियर तक) को फैलोपियन निलका में स्थानान्तरित किया जाता है।

प्र. 19. इन्ट्रा युटेराइन ट्रांसफर (IUT) क्या है।

उत्तर इस विधि में 8 ब्लास्टोमियर से अधिक के भ्रूण को गर्भाशय में स्थानान्तरित किया जाता है।

प्र. 20. GIFT क्या है।

उत्तर ऐसी स्त्रियाँ जिसमें अण्डाणु उत्पन्न नहीं होते है परन्तु निषेचन ओर भ्रूण परिवर्धन के लिए उपयुक्त वातावरण प्रदान कर सकती है ऐसी स्त्रियों के लिए GIFT तकनीक अपनाई जाती है। इसके अन्तर्गत दाता के अण्डाणु को फैलोपियन निलका में स्थानान्तरित करके निषेचन करवाया जाता है।

प्र. 21. GIFT का पुरा नाम लिखो-

उत्तर गेमेट इन्ट्रा फैलोपियन ट्रांसफर

प्र. 22. कृत्रिम वीर्य सेचन क्या है।

उत्तर इस तकनीक में पित या स्वस्थ दाता से शुक्राणु लेकर कृत्रिम रूप से या तो स्त्री की योनी में अथवा उसके गर्भाशय मे प्रविष्ठ करवाया जाता है।

जनसंख्या विस्फोट किसे कहते है। इसके प्रमुख कारण लिखो।

उत्तर जनसंख्या में होने वाली वृद्धि को जनसंख्या विस्फोट कहते है।

प्रमुख कारण:-

- (i) मृत्युदर में गिरावट
- (ii) मातृ मृत्युदर एवं शिशु मृत्युदर में कमी
- (iii) जनन आयु के लोगोंकी संख्या में वृद्धि

24. जनसंख्या वृद्धि दर के नियंत्रण के उपाय लिखो।

- (i) गर्भनिरोधक उपाय अपनाने के लिए प्रेरित करना।
 - (ii) हम दो हमारे दो के नारे पर जोर देना।

उत्तर

(iii) विवाह की आयु स्त्री के लिए 18 वर्ष व पुरुष के लिए 21 वर्ष सुनिश्चित करना।

25. डायफ्राम एवं वाल्ट क्या है? इसका उपयोग किस प्रकार किया जाता है।

उत्तरु डायफ्राम एवं वाल्ट रबर से बने गर्भनिरोधक है। इसका उपयोग स्त्री के जनन मार्ग में सहवास के पूर्व गर्भाशय ग्रीवा को ढकने में किया जाता है।

26. पिल्स क्या है? यह गर्भनिरोधक के रूप में किस प्रकार कार्य करती है? समझाओं।

उत्तर यह महिलाओं द्वारा मुँह से खाया जाने वाला गर्भनिरोधक प्रोजेस्टेरॉन अथवा प्रोजेस्टेरॉन और ऐस्ट्रोजन का संयोजन है। ये गोली के रूप में आता है जिसे पिल्स भी कहते है। ये गोलियाँ आर्तव चक्र के पहले दिन से शुरू करके 21 वे दिन तक प्रतिदिन ली जाती है।

ये अण्डोत्सर्जन (Ovulation) और रोपण (Implantation) को रोकने के साथ गर्भाशय ग्रीवा की श्लेष्मा की गुणवत्ता बदल देती है।

27. भारत में उल्बवेधन का दुरूपयोग किस प्रकार हो रहा है।

उत्तर उल्बेधन द्वारा शिशु का लिंग निर्धारण करने में दुरुपयोग हो रहा है और मादा भ्रूण का पता लगने पर शीघ्र ही MPT करवा दिया जाता है जो पूरी तरह से गैर कानुनी है।

28. क्या विद्यालयों में यौन शिक्षा आवश्यक है? यदि हाँ, तो क्यों?

उत्तर हाँ, विद्यालयों में यौन शिक्षा आवश्यक है क्योंकि छात्र / छात्राओं को यौन सम्बन्धी विभिन्न पहलुओं के बारे में फैली हुई भ्रान्तियों एवं यौन सम्बन्धी गलत धारणाओं से छुटकारा मिल सके। बच्चो को जनन अंगो, किशोरावस्था एवं उससे संबंधित परिवर्तनो, यौन संचारित रोगों आदि के बारे में जानकारी प्राप्त होती है।

वंशागति और विविधता के सिद्धांत

अंक भार - 5, वस्तुनिष्ठ - 1 (½ अंक), रिक्त स्थान - 1 (½ अंक) अतिलघुत्तरात्मक-1 (1 अंक), लघुउत्तरात्मक - 2 (प्रत्येक 1½ अंक)

		जातात्तु तत्तात्त्व	1(1				
वस्तुा	नेष्ठ प्रश्नः-			8.		प्र किसका उदाहरण है?	
1.	_	🗙 प्रकार का लिंग निर्धारण प्रव	दर्शित		(अ) सहप्रभाविता का		
	करता है?	, <u>, , , , , , , , , , , , , , , , , , </u>			(ब) बहुप्रभाविता वंशा		
	(अ) मानव	(ब) फलमक्खी	, ,		(स) अपूर्ण प्रभाविता व		
	(स) पक्षी	(द) टिड्डा	(द)		(द) डाउन सिन्ड्रोम क		(ब)
2.		र्गितंगसूत्री प्रभावी रोग है?		9.	. •	पर्यावरण के प्रभाव का	उदाहरण
	(अ) फीनाइल कीटो	•			है।		
	(ब) सिकेल सैल एन				(अ) मानव में त्वचा क	न रंग	
	(स) सिस्टक फाइब्रो				(ब) डाउन सिन्ड्रोम		
	(द) मायोटोनिक डिर	,	(स)		(स) फेनिल कीटोमेह		
3.	अपूर्ण प्रभाविता का	उदाहरण है-			(द) क्लाईन फेल्टर सि	•,	(왜)
	(अ) मटर में फूलों व			10.	शब्द जीनोटाइप दिया		
	(ब) एंटीराइनम में फू	लों का रंग			(अ) एच जे. मुलर द्वा	रा	
	(स) ड्रोसोफिला में उ	भाँख का रंग			(ब) टी बावेरी द्वारा		
	(द) उपर्युक्त सभी		(অ)		(स) डब्ल्यू.एस. सट्ट		
4.	डाउन सिन्ड्रोम कारा	ग निम्नलिखित में से किस गु	णसूत्र		(द) डब्ल्यू.एस. जोहन	ासन द्वारा	(द)
	की त्रिसूत्रता है?			11.	अमीनों अम्ल उपापच		
	(अ) 6 वां	(ब) नौवां			(अ) एल्केप्टोनूरिया	(ब) फिनाइलकीटोर्नू	रेया
	(स) इक्कीसवाँ	(द) तेईसवाँ	(स)		(स) एल्बीनिज्म	(द) उपरोक्त सभी	(द)
5.		नक्षण से पीड़ित व्यक्ति में नहीं	होता	12.		त 21वाँ गुणसूत्र के कार	ण होता है
	है-				यह किसके द्वारा बता		
	•	रूप (ब) ४६ गुणसूत्र			(अ) जे.एल. डाउन (1866)	
	(स) लघुवृषण	(द) गाइनोकोमेस्टिया	(অ)		(ब) लेज्यने (1959)		
6.	-	लंग निर्धारण प्रणाली पायी जा	ती है?		(स) काइनफेल्टर (19		
		(ब) मुधमक्खी में			(द) हेगटिगंटन (187		(अ)
	(स) कबूतर में	(द) बंदर में	(অ)	13.		ने पृथक रूप से मेण्डल वे	ह सिद्धांतों
7.		तीन या अधिक जीनों द्वारा नि	यत्रित		की खोज की वे है?		
	होते है?				(अ) डी.ब्रिज, कोरेन्स		
	(अ) बहुप्रभाविता के				(ब) सट्टन, मोर्गन औ		
	(ब) बहुजीनी लक्षण				(स) एवेरी, मेकलियॉड		
	(स) एकजीनी लक्षण				(द) बेटसन, पुन्नेट औ		(अ)
	(द) न्यूनजीनी लक्षण	ī	(ब)	14.	जब साथ रहने वाले ट	शेनों एलील्स अपना प्रभ	ाव प्रकट

शखाव	ाटा ामशन-100 ├──				
	करते है तो इस घटना क	ो कहते है?		प्र. 6.	जब एक जीन दूसरे जीन के प्रभाव को कम करे तो इसे
	(अ) प्रभाविता	(ब) सहप्रभाविता			कहते है।
	(स) बहुप्रभाविता	(द) अपूर्ण प्रभाविता	(ब)	उत्तर	प्रबलता
15.	मेण्डल के नियम का अ	पवाद है-		प्र. 7.	डाउन सिन्ड्रोम विकार को सर्वप्रथम ने खोजा था।
	(अ) स्वतंत्र अपव्यूहन व	ज नियम		उत्तर	लैनाडम डाउन
	(ब) पृथक्करण का नियग	न		प्र. 8.	F, पीढ़ी में प्रकट होने वाले लक्षण को कहते है।
	(स) सहलग्नता	(द) गुणसूत्र सिद्धांत	(स)	उत्तर	प्रभावी लक्षण
16.	बिंदु उत्परिवर्तन में क्या	अंतर्निहित होता है?		प्र. 9.	जिन रासायनिक और भौतिक कारको द्वारा उत्परिवर्तन
	(अ) निवेश	(ब) एकल क्षार युग्म पी	रेवर्तन		होता है उन्हेंकहते है।
	(स) विलोपन	(द) द्विगुणन	(ब)	उत्तर	उत्परिवर्तनजन
17.	_	B तथा माता का O है। मूह होने की संभावना है?		प्र. 10.	पृष्प रंग की वंशागतिप्रभाविता को दर्शाता है।
	(अ) A या B	(ब) केवल A		उत्तर	(i) स्नेपड्रेगन (ii) अपूर्ण
	(स) B या O	(द)केवल B	(अ)		•
18.	•	पुरुष की शादी एक सामा मिफोलिया ग्रस्त होने की		प्र. ११. उत्तर	XO प्रकार का लिंग निर्धारण प्रदर्शित करता है। टिड्डा
	सम्भावना है-			प्र. 12.	एक अंलिगसूत्री प्रभावी रोग है।
	(अ) 100%	(অ) 75%		उत्तर	सिस्टिक फाइब्रोसिस
	(स) 50%	(द) 0%	(द)	प्र. 13.	डाउन सिन्ड्रोम गुणसूत्र की त्रिसूत्रता के कारण होता
19.	पादप जिसका जीनोटाइ	प AABbCC है, उसके	कितने		है।
	प्रकार के युग्मक बनते है	<u>\$</u> ?		उत्तर	21वाँ
	(अ) 9	(অ) 2		प्र. 14.	अगुणित-द्विगुणित लिंग निर्धारण प्रणाली में पाई
	(刊) 3	(द) 4	(ब)		जाती है
रिक्त स्थ	प्रानों की पूर्ति कीजिए-			उत्तर	मधुमक्खी में
प्र. 1.	जब साथ रहने वाले दो करते है तो इस को	नों एलील्स अपना प्रभाव . कहते है।	प्रकट	प्र. 15.	लक्षण जो सामान्यतः तीन या अधिक जीनों द्वारा नियन्त्रित होता है। कहलाता है।
उत्तर	सहप्रभाविता			उत्तर	बहुजीनी लक्षण
प्र. 2.	शब्द जीनोटाइप	के द्वारा दिया गया।		प्र. 16.	फेनिल कीटोमेह व्याधि का उदाहरण है।
उत्तर	डब्ल्यू एल. जोहानसन			उत्तर	बहुप्रभाविता वंशागति
प्र. ३.	DNA के क्षार युग्मों के	घटने-बढ़ने से उत्प	रिवर्तन	प्र. 17.	1900 में तीन वैज्ञानिको ने मेण्डलवाद की पुनः खोज की
	होता है।			उत्तर	डी ब्रिज, कोरेन्स और शेरमक
उत्तर	फ्रेम शिफ्ट				सहलग्नता के नियम का अपवाद है।
प्र. 4.	ने वंशागति के नि	यम प्रतिपादित किये।		न्न. 18. उत्तर	मेंडल
उत्तर	मेंडल				
प्र. 5.	पेनेट वर्ग नामक आरेख विकसित किया।	को आनुवांशिकी	विद ने	у. 19.	पादप जिसका जीनोटाइप AA Bb cc है। उससे प्रकार के युग्मक बनेगे
उत्तर	रेजीनाल्ड सी पनेट			उत्तर	2

सत्र: 2023-24

प्र. 20. पिता का रक्त समूह AB तथा माता का O है बच्चों का रक्त समूह हो सकता है।

उत्तर A या B

प्र. 21. स्त्रीयाँ हमेशा हीमोफिलीया रोग की होती है।

उत्तर वाहक

अतिलघुरात्मक प्रश्नोत्तर :-

प्र. 1. उस वैज्ञानिक का नाम बताइये जिसने वंशागित के क्रोमोसोमीय सिद्धांत की प्रायोगिक पृष्टि की।

उत्तर थामस हंट मॉर्गन

प्र. 2. मनुष्य में रक्त समूह की वंशागित किन दो प्रकारों की वंशागित का उदाहरण है ?

उत्तर सह प्रभाविता तथा बहुएलली (Multiple Allelism)

प्र. 3. कौनसी घटना क्रोमोसोम के स्वतंत्र अपव्यूहन हेतु उत्तरदायी होती है?

उत्तर समजात क्रोमोसोम का अर्धसूत्री विभाजन की मेटाफेज अवस्था में व्यवस्थित व पृथक होना।

प्र. 4. एक क्रोमोसोम पर स्थित दो जीनो की दूरी का पता किस प्रकार लगाया जाता ह?

उत्तर जीनों के बीच की दूरी उनकी पुनसंयोजन आवृति के आधार पर तय की जाती है। कम आवृति जीनो के पास-पास स्थित होने की परिचायक है।

प्र. 5. दो जीन किन स्थितियों में 50% पुनसंयोजन आवृति प्रदर्शित कर सकते है?

उत्तर (a) जब जीन अलग-अलग क्रोमोसोम पर स्थित है।
(b) एक ही क्रोमोसोम पर स्थित जीन इतनी दूर-दूर हो कि
उनके बीच हर बार क्रॉसिंग ओवर सुनिश्चित हो।

प्र. 6. किन जीवो में मादाएँ लिंग क्रोमोसोम के लिए विषम युग्मकी होती है।

उत्तर पक्षियों में मादा में लिंग क्रोमोसोम ZW होते है तथा यह विषमयुग्मजी होती है।

प्र. 7. चित्र में प्रदर्शित आनुवांशिक विकार प्रभार

है या अप्रभावी?

उत्तर अप्रभावी (Recessive)

प्र. 8. सिकेल सैल एनीमिया में रोगी का हीमाग्लोबिन सामान्य मनुष्य के हीमोग्लोबिन से किस प्रकार भिन्न होता है? उत्तर असामान्य हीमोग्लोबिन की बीटा ग्लोबिन श्रृंखला में छठवाँ अमीनों अम्ल वेलीन होता है। जबकि सामान्य हीमोग्लोबिन में ग्लुटेमिक अम्ल।

प्र. 9. मटर में द्विगुणित क्रोमोसोम सँख्या 14 है इसमें कितने सहलग्नता समूह बनेगे?

उत्तर 7

प्र. 10. मानव में अलिंग सूत्री प्रभावी तथा अंलिग सूत्री अप्रभावी मेण्डलीय दोष से प्रत्येक का एक-एक उदाहण दीजिए।

उत्तर अंलिग सूत्री प्रभावी – मायोटोनिक डिस्ट्राफी अंलिग सूत्री अप्रभावी – दात्र कोशिका अरक्तता।

प्र. 11. XO प्रकार की लिंग निर्धारण प्रदर्शित करने वाली एक कॉकरोच प्रजाति के नर में 23 क्रोमोसोम पाये जाते है, इस प्रजाति की मादा में कुल कितने क्रोमोसोम होंगे?

उत्तर 24

प्र. 12. बिन्दु उत्परिवर्तन के कारण कौन-सा रोग होता है?

उत्तर दात्र कोशिका अरक्तता

प्र. 13. उत्परिवर्तनजन किसे कहते है?

उत्तर वह भौतिक रासायनिक व जैविक कारक जो जीव के आनुवांशिक पदार्थ DNA, जीन या क्रोमोसोम में वंशागत होने वाले बदलाव उत्पन्न कर दे।

प्र. 14. नर मधुमक्खी में 16 गुणसूत्र होते हैं जबिक मादा में 32 गुणसूत्र होते है? एक कारण बताइए।

उत्तर नर मधुमक्खी का विकास अनिषेचित अण्डे से होता है।

प्र. 15. एक संकर संकरण व द्विसंकर संकरण का फीनोटाइप व जीनोटाइप अनुपात लिखिए।

उत्तर एकसंकर संकरण - 3:1 व 1:2:1 द्विसंकर संकरण -9:3:3:1 व 1:2:2:4:1:2: 1:2:1

प्र. 16. एक संकर परीक्षाथी व द्विसंकर परीक्षार्थी संकरण के लिए जीनोटाइप व फीनोटाइप अनुपात लिखिए।

उत्तर एक संकर संकरण हेतु जीनोटाइप व फीनोटाइप अनुपात – 1:1, द्विसंकर संकरण हेतु 1:1:1:1

प्र. 17. सहलग्नता व पुनर्योगज शब्द किसने दिया ?

उत्तर मॉर्गन ने।

प्र. 18. 'X काय' नाम किसने दिया ?

उत्तर

उत्तर हेकिंग ने

प्र. 19. फेनिल कीटोमेह व्याधि किस एन्जाइम के लिए उत्तरदायी जीन में उत्परिवर्तन के कारण होता है?

उत्तर फेनिल एलेनीन हाइड्रोक्सीलेज एन्जाइम।

लघुउत्तरात्मक प्रश्न

प्र. 1. एक संकर सकंरण क्या है? एक संकर संकरण का उपयोग करते हुए प्रभाविता व पृथक्करण के नियमों को समझाइए।

उत्तर एक संकर क्रॉस ऐसा क्रॉस है जिसमें एक समय में एक जीन के दो विपर्यासी विभेदको की वंशागित का अध्ययन किया जाता है। इसके तीन पद है।

- (a) शुद्ध प्रजननी जनकों का चयन मटर के पौधे की लम्बाई के लक्षण के दो विभेदको लम्बा व बौने शुद्ध प्रजननी जनकों का चयन।
- (b) इनके बीच संकरण तथा ${\rm F_1}$ पीढ़ी का निर्माण।
- (c) F_1 के पौधों के स्वपरागण से F_2 पीढ़ी का निर्माण लम्बाई को T तथा बौनेपन के लिए t प्रतीको का चयन करने पर जनको के अलील होंगे-

मेण्डल के प्रभाविता के नियम के अनुसार:- एक जोड़ा विपर्यासी विभेदकों में अंतर रखने वाले दो शुद्ध प्रजननी पौधों में संकरण कराने पर F_1 पीढ़ी में केवल एक जनक के लक्षण ही प्रकट होते हैं। यह विभेदक प्रभावी तथा दूसरा जो F_1 पीढ़ी में छिपे रूप में होता है, अप्रभावी होता है। मेण्डल का प्रभावित का नियम F_2 में अप्रभावी लक्षणों के पुन: प्रकट होने की भी व्याख्या करता है तथा कारकों की विच्छिन प्रकृति स्पष्ट करता है।

विसंयोजन या पृथक्करण के नियमानुसार: - युग्मक निर्माण के समय अलील युग्मक के दोनों अलील पृथक हो जाते है तथा निषेचन के समय युग्मकों के यादृच्छिक संलयन के कारण उनकी युग्मित अवस्था पुन: स्थापित हो जाती है। यह नियम इस तथ्य की भी पुष्टि करता है कि अलील किसी भी अवस्था में समिश्र नहीं बनाते है अत: सिमश्र वंशागित को इस नियम द्वारा अस्वीकृत किया जा सकता है। युग्मक बनते

समय चूंकि युग्मक प्रत्येक जीन का केवल एक ही अलील प्राप्त करते हैं अत: युग्मक किसी भी विशेषक के लिए शुद्ध होते है। इस कारण पृथक्करण के नियम को युग्मकों की शुद्धता का नियम भी कहते है।

प्र. 2. मेंडलीय विकार क्या होते है ? प्रमुख मेंडलीय विकारों को समझाइए।

मेण्डलीय विकार: - ये विकार प्राय: एकल जीन के रूपातंरण या उत्परिवर्तन द्वारा निर्धारित होते हैं उदा. हीमोफीलिया, सिस्टिक फाइब्रोसिस, सिकेल सेल एनीमिया, वर्णान्धता, फीनाइल कीटोन्यूरिया, थैलेसीमिया आदि। मेण्डेलीय विकार प्रभावी या अप्रभावी हो सकते हैं जैसे - मायोटोनिक डिस्ट्रॉफी (अलिंगी गुणसूत्र पर अप्रभावी विशेषक), दात्र कोशिका अरक्तता (अलिंगी गुणसूत्र पर अप्रभावी विशेषक), हीमोफीलिया (लिंग गुणसूत्र पर अप्रभावी विशेषक।

हीमोफीलिया: - यह रोग लिंग गुणसूत्र - X पर अप्रभावी जीन की उपस्थिति के कारण होता है। इस रोग से ग्रस्त व्यक्ति में रक्त का थक्का नहीं बन पाता है। प्राय: स्त्रियां इस रोग की वाहक होती है।

दात्र कोशिका अरक्तताः – मनुष्य में गुणसूत्र क्रमांक 11 में B ग्लोबिन जीन के छठे कोडोन में GAG के स्थान पर GUG आने के कारण हीमाग्लोबिन अणु की बीटा ग्लोबिन श्रृखंला की छठी स्थिति में ग्लूटेमिक अम्ल के स्थान पर वेलिन अमीनो अम्ल आ जाताहै इससे RBC हांसियाकार व छोटी हो जाती है तथा इनका जमाव होने लगता है। उत्तकों तक O_2 पूरी तरह नहीं पहुँचने से रोगी की मृत्यु तक हो जाती है।

फीनाइल कीटोन्यूरिया :- यह मनुष्य में 12वें गुणसूत्र में विकृति आने के कारण उत्पन्न अलिंग गुणसूत्री अप्रभावी रोग है। यह नवजात शिशु में पायी जाने वाली जन्मजात उपापचयी विकृति है। इस रोग में फिनाइल एलेनिन हाइड्रोक्सीलेज एन्जाइम नहीं बन पाता है। यह एजांइम फिनाइल एलेनिन को टाइरोसीन अम्ल में बदलता है। अत: इस विकृति या रोग में फिनाइल एलेनिन टाइरोसीन में नहीं बदल पाता है। मस्तिष्क के मेरुद्रव में फिनाइल ऐलेनिन के अधिक जमाव के कारण मानसिक अवरूद्धता (एलेनिन जड़बुद्धि) उत्पन्न हो जाती है।

वर्णान्थता: - यह एक लिंग सहलग्न आनुवांशिकी रोग है। इस रोग में व्यक्ति विभिन्न रंगो में अन्तर नहीं कर पाता है। यह दो प्रकार का होता है।

(i) लाल हरी वर्णान्धता (ii) नीली वर्णान्धता

स्त्रियाँ इस रोग की वाहक होती है जबकि पुरुष रोगी क्योंकि इनमें केवल एक X गुणसूत्र पाया जाता है।

उत्तर

प्र. 3. मानव में लिंग निर्धारण की प्रक्रिया को उचित आरेख द्वारा समझाइए।

उत्तर मानव में लिंग निर्धारण XY प्रकार का होता है। नर में XY लिंग गुणसूत्र होते हैं जबिक स्त्री में XX लिंग गुणसूत्र होते हैं। नर में शुक्रजनन से दो प्रकार के शुक्राणु बनते हैं। आधे शुक्राणुओं में X -गुणसूत्र तथा शेष आधे शुक्राणुओं में Y-गुणसूत्र तथा शेष आधे शुक्राणुओं में Y-गुणसूत्र होता है। स्त्री में बनने वाली सभी अण्डाणु X गुणसूत्र युक्त होते हैं। यदि X-गुणसूत्र युक्त शुक्राणु का अण्डाणु से निषेचन होता है तो युग्मनज (XX) स्त्री में होता है और यदि Y-गुणसूत्र युक्त शुक्राणु का अण्डाणु से निषेचन होता है तो युग्मन (XY) नर में परिवर्तित होता है।

पुरुष

स्त्री

चित्र- मानव में लिंग निर्धारण

- प्र. 4. (i) पक्षियों में किस प्रकार का लिंग निर्धारण पाया जाता है।
 - (ii) मधुमक्खी में लिंग निर्धारण को उचित आरेख द्वारा समझाइए।
- उत्तर (i) पिक्षयों में ZW ZZ प्रकार का लिंग निर्धारण होता है। (ii) मधुमक्खी में लिंग निर्धारण :- मधुमक्खी में अगुणित- द्विगुणित लिंग निर्धारण प्रणाली पाई जाती है। इसमें लिंग निर्धारण मधुमक्खी द्वारा प्राप्त गुणसूत्र समुच्चय पर निर्भर करता है। एक शुक्राणु एवं अण्डाणु के युग्मन से उत्पन्न द्विगुणित (2n=32) संतित एक मादा (रानी तथा श्रमिक) में विकसित होती है। जबिक एक अनिषेचित अण्डाणु अनिषेक जनन द्वारा अगुणित (n = 16) नर (ड्रोन) में विकसित होते हैं। नर समसूत्री विभाजन द्वारा शुक्राणु उत्पादित करते हैं जबिक मादा (रानी) अर्द्धसूत्री विभाजन द्वारा अण्डाणु उत्पादित करती है।

F, पीढ़ी नर मधुमक्खी 16 मादा मधुमक्खी 32

प्र. 5. क्रोमोसोमीय विकार क्या होते है ? प्रमुख क्रोमोसोमीय विकारों के नाम व उनके उत्पन्न होने का कारण बताइए।

उत्तर गुणसूत्रों की अधिकता, अनुपस्थिति या असामान्य विन्यास के कारण अनेक विकार उत्पन्न हो जाते है, जिन्हें क्रोमोसोमीय विकार कहते हैं।

प्रमुख क्रोमोसोमीय विकार विकार उत्पन्न होने के कारण

1. डाउन सिन्ड्रोम 21वें गुणसूत्र की एक प्रति की अधिकता से (46 +1)

2. टर्नर सिंड्रोम एक X-गुणसूत्र की हानि से (44 + XO)

3. क्लाइनफेल्टर सिंड्रोम एक X-गुणसूत्र की अधिकता से (44 + XXY)

प्र. 6. द्विसकंर सकंरण किसे कहते है। द्विसंकर सकंरण के आधार पर स्वतंत्र अपव्यूहन के आरेख सहित समझाइए।

जब मेण्डल को एक युग्म विकल्पी लक्षणों के क्रॉस अर्थात् एक संकर क्रॉस या एक गुण वंशागित में सफलता प्राप्त हो गयी तो उसने दो युग्म विकल्पी लक्षणों के लिए कार्य किया। इस प्रकार के अध्ययन को द्विसंकर संकरण कहा गया है। स्वतंत्र अपव्यूहन का नियम:- एक से अधिक जोड़ी विपर्यासी लक्षणों की वंशागित का साथ-साथ अध्ययन करने पर, प्रत्येक जोड़ी विपर्यासी लक्षणों के कारक अन्य विपर्यासी लक्षणों से प्रभावित हुए बिना स्वतंत्र रूप से अपव्यूहन करते है अर्थात् प्रत्येक लक्षण की वंशागित अन्य लक्षणों की वंशागित से स्वतंत्र होती है।

	YR	Yr	yR	yr
YR	YYRR	YYRr	YyRR	YyRr
Yr	YYRr	YYrr	YyRr	Yyrr
yR	YyRR	YyRr	yyRR	yyRr
vr	YvRr	Yvrr	vvRr	vyrr

लक्षण प्ररूप:- पीले-गोल : पीले झुरींदार : हरे गोल : हरे झुरींदार 9 3 3 1 शेखावाटी मिशन-100

सत्र : 2023-24

जीन प्ररूप :-YYRR: YyRR: YYRr: YyRr: YYrr:

Yyrr: yyRR: yyRr: yyrr

1:2:2:4:1:2:1:2:1

सहप्रभाविता किसे कहते है ? उदाहरण देकर समझाइए। प्र. 7.

प्रभावी व अप्रभावी दोनों एलील जब स्वतंत्र रूप से अपनी उत्तर अभिव्यक्ति प्रदर्शित करते है तो उसे सहप्रभावित करते है। F, पीढ़ी में प्रभावी एवं अप्रभावी जीनों की बराबर अभिव्यक्ति होती है। उदाहरण -मनुष्यों में रूधिर वर्ग।

> मनुष्य में चार रूधिर वर्ग A, B, AB और O पाये जाते है। इन रूधिर वर्गो की वंशागति एक ही स्थान पर स्थित एक ही जीन (i) के तीन विकल्पों के कारण होती है जिन्हें IA, IB, i से व्यक्त करते है।

> I^{A} की उपस्थिति से रक्त वर्ग A, I^{B} की उपास्थिति से रक्त वर्ग B बनता है तथा I^AI^B के कारण रूधिर वर्ग AB बनता है ।

अपूर्ण प्रभाविता किसे कहते है? श्वान पुष्प में रंग की प्र. 8. वंशागति F,पीढ़ी तक समझाइए।

जब कोई प्रभावी लक्षण जोडे के दूसरे लक्षण को पूरी तरह से उत्तर नहीं दबा पाता है तो इसे अपूर्ण प्रभाविता कहते हैं। इसमें एक जीन के युग्मविकल्पीयों में प्रभावी व अप्रभावी का सम्बंध नहीं होता है। समयुग्मजी विपर्यासी लक्षणों वाले जनकों से प्राप्त F, पीढ़ी की विषमयुग्मजी सतंतियों के लक्षण दोनों जनको के मध्यवर्ती होते हैं। इनमें जीन के दोनों युग्म विकल्पी एक दूसरे के प्रति प्रभावी व अप्रभावी न होकर समान रूप से सशक्त होते हैं। उदा. स्नेपड्रेगन/एंटीराइनम के लाल (RR) रंग के पूष्प वाले पादपों का सफेद रंग (m) रंग के पुष्प वाले पादपों से क्रॉस कराने पर $\mathbf{F}_{\!\scriptscriptstyle 1}$ पीढ़ी में गुलाबी रंग के पुष्प वाले पादप व इनमें \mathbf{F}_2 पीढ़ी में प्राप्त लाल, गुलाबी व सफेद रंग के पुष्प वाले पादपों का अनुपात 1:2:1 होता है।

लक्षण प्ररूप - लाल : गुलाबी : सफेद

; 2 ; 1

जीन प्ररूप RR: Rr: rr

2

प्र. 9. वंशावली विश्लेषण क्या है ? यह विश्लेषण किस प्रकार उपयोगी है?

वंश वृक्ष या आरेख के रूप में कुछ आनुवांशिक विशेषकों का उत्तर दो या अधिक पीढियों का अभिलेख वंशावली या पेडिग्री कहलाता है अत: लक्षणों की वंशागित का मनुष्य की अनेक पीढियों में विश्लेषण करना ही वशांवली विश्लेषण है। यह लक्षण सामान्य या बिना किसी महत्त्व के हो सकते है, जैसे जीभ को बेलनाकार करना या विशेष चिकित्सकीय महत्व के लक्षण जैसे : आनुवांशिक विकार।

वंशावली विश्लेषण का महत्व

चूकिं मनुष्यों में अनेक नैतिक व जैविक कारणों से तुलनार्थ संकरण नहीं कराया जा सकता अत: आनुवांशिक विकारों की वंशागित का अध्ययन वंश वृक्ष की मदद से किया जा सकता

किसी दम्पति को उनकी वंशावली के आधार पर उनके बच्चों में हो सकते वाली असामान्यताओं के बारे में समय से अवगत कराया जा सकता है।

वंशावाली विश्लेषण से मनुष्य के लिंग सहलग्न रोगों की वंशागति संबंधी हमारा ज्ञान समृद्ध हुआ है।

प्र. 10. परीक्षार्थ संकरण से क्या तात्पर्य है? उचित उदाहरण देकर समझाइए।

परीक्षार्थ क्रॉस:- यह जानने के लिए किया गया क्रॉस कि उत्तर प्रभावी लक्षण के लिए अज्ञात जीनोटाइप वाला जीव समयुग्मजी है या विषमयुग्मजी, परीक्षार्थ क्रॉस कहलाता है। अर्थात् F अज्ञात जीव का संकरण अप्रभावी जनक जीव से कराया जाना परीक्षार्थ क्रॉस कहलाता है। परीक्षार्थ संकरण से यह पता लगाया जाता है कि प्रभावी जीव समयुग्मजी है या विषमयुग्मजी। इस सकंरण में अज्ञात जीनोटाइप वाले जीव का समयुग्मजी अप्रभावी जनक से सकरण कराया जाता है।

एक संकर प्रभावी इस प्रकार के संकरण में केवल प्रभावी (i) जीन उत्पन्न करेगा

> RR X $F_1(Rr)$ सभी लाल लाल पुष्प सफेद पुष्प

(ii) $rr \rightarrow F_1$ Rr:rr (संकर लाल पुष्प) (सफेद शुद्ध) 50 - 50%

> अत: आसानी से बताया जा सकता है कि दिया गया प्रभावी जीव समयुग्मजी है या विषमयुग्मी है। द्विसंकर परीक्षार्थ

संकरण (RrYy) X (rryy) में सतंति (1:1:1:1) के अनुपात में बनती है अर्थात् चार प्रकार के जीव बनेगे। जबिक समयुग्मजी RR YY x rryy होने पर केवल एक प्रकार के जीव बनेगे।

प्र. 11. वंशागित का क्रोमोसोम - वाद क्या है ? जीन व क्रोमोसोम के व्यवहार की तुलना कीजिए।

उत्तर सट्टन और बावेरी के अनुसार क्रोमोसोम ही मेंडल के कारको के वाहक हैं। क्रोमोसोम के युग्म बनने तथा अलग होने से कारको का विसंयोजन एवं स्वतंत्र अपव्यूहन होता है इसे वंशागति का क्रोमोसोमवाद कहते हैं।

कोमोसोम और जीन के व्यवहार में तुलना: जीन के युग्मिविकल्पियों के समान ही गुणसूत्र भी युग्म के रूप में पाये जाते हैं तथा एक जीन के दोनों विकल्पी समजात गुणसूत्रों के समजात स्थान पर विद्यमान होते हैं। परंतु जीन के युग्मिविकल्पी

एक-दूसरे से स्वतंत्र विसयोजित होते है तथा एक क्रोमोसोम युग्म दूसरे से स्वतंत्र विसंयोजित होता है।

प्र. 12. उत्परिवर्तन किसे कहते हैं? ये कितने प्रकार के होते हैं? उदाहरण सहित समझाए।

उत्तर किसी जीव की आनुवांशिक संरचना में अचानक होने वाले परिवर्तन जो अगली पीढ़ी में भी वंशानुगत हो सकते हैं उत्परिवर्तन कहलाते हैं।

> प्रकार - (i) बिन्दु उत्परिवर्तन या जीन उत्परिवर्तन - यदि जीनी सरंचना में परिवर्तन होने से जीव के गुणों में अचानक परिवर्तन आते है तो इसे जीन उत्परिवर्तन कहते हैं उदा. दात्र कोशिका अरक्तता रोग

> (ii) गुणसूत्री उत्परिवर्तन :- गुणसूत्रों में जीनों की संख्या या उनके पुनर्विन्यास में परिवर्तन के कारण गुणसूत्रों की संरचना में होने वाले परिवर्तनों को गुणसूत्री उत्परिवर्तन कहते है।

वंशागति के आण्विक आधार

अंक भार - 5, वस्तुनिष्ठ - 1 (½ अंक), रिक्त स्थान - 1 (½ अंक) अतिलघुत्तरात्मक-2 (प्रत्येक 1 अंक), दीर्घउत्तरात्मक - 1 (3 अंक)

			191 2 (3)	. 447 1 31	पा), पायणातात्मया ।	(5 9191)	
वस्तुनि	ष्ठ प्रश्न				(अ) 3	(ৰ) 20	
प्र. 1.	जेनेटिक कोड में समाप	ान कोडोन है?			(刊) 64	(द) 01	(स)
	(अ) UAA	(অ) UAG		प्र. 10.	सेण्ट्रल डोग्मा सिद्धान्त	प्रस्तावित किया था।	
	(स) UGA	(द) उपरोक्त सभी	(द)		(अ) बीडल व टॉटम ने	(ब) टेमिन व बाल्टी	मोर ने
प्र. 2.	डी.एन.ए. आनुवांशिक	पदार्थ है <i>,</i> इसका अन्ति	ाम प्रमाण		(स) क्रिक ने		
	निम्नलिखित में से किस				(द) फ्रैंकलिन व चारगॉप	ह ने	(स)
	(अ) ग्रिफिथ	(ब) एवेरी		प्र. 11.	न्यूक्लियोसाइड होता है-		
	(स) हर्शे व चेज	(द) मैक्लियाड व क	गर्टी (स)		(अ) नाइट्रोजनी क्षार + श	व्किरा	
प्र. ३.	एक द्विसूत्री डी.एन.ए.	अणु में दो रज्जुको व	के क्षारक		(ब) नाइट्रोजनी क्षार + श	र्करा + फॉस्फेट	
	निम्नलिखित में से किस	-			(स) नाइट्रोजनी क्षार + प	गॅस्फेट	
		ारा(ब) सहसंयोजी बन्ध			(द) शर्करा + फॉस्फेट री	ाढ	(अ)
	, ,	(द) एस्टर बन्ध द्वारा	, ,	प्र. 12.	DNA के ऐसे भाग जो उ	भपनी स्थिति बदलने में	सक्षम है,
प्र. 4.	लैक ओपेरॉन में संरचन	ात्मक जीन का क्रम हो	ता है?		वे कहलाते है?		
	(স) LacA, LacY, l	LacZ			(अ) एक्जॉन	(ब) इंट्रॉन	
	(অ) LacA, LacZ, I	LacA			(स) सिस्ट्रॉन	(द) ट्रांसपोजोन	(द)
	(स) LacY, LacZ, I	LacA		प्र. 13.	ओकाजाकी खण्ड पाये	जाते है?	
	(द) LacZ, LacY, L	acA	(द)		(अ) अनुलेखन इकाई में	(ब) लीडिंग स्ट्रेंड में	
प्र. 5.	m-RNA का संश्लेषण	ा कहलाता है?			(स) लैगिंग स्ट्रेड में	(द) RNA की भुजा	पर (स)
	(अ) पारक्रमण	(ब) रूपान्तरण		प्र. 14.	DNA फिंगर प्रिन्टिंग क	ो विधि विकसित की -	•
	(स) अनुलेखन	(द) स्थानान्तरण	(स)		(अ) टेलर ने	(ब) फ्रैंकलिन ने	
प्र. 6.	DNA का संश्लेषण क	हलाता है?			(स) एलैक जेफ्री ने	(द) क्रिक ने	(स)
	(अ) प्रतिकृतिकरण	•		प्र. 15.	लैक ओपेरॉन में प्रेरक अ	ाणु है?	
	(स) अनुवाद	(द) डिएमीनेशन	(अ)		(अ) ग्लूकोज	(ब) दमनकारी प्रोटीन	
प्र. 7.	जैनेटिक कोड नाम कि	सने प्रस्तावित किया?			(स) परमिऐज	(द) लैक्टोज	(द)
	(अ) फ्रांसिस क्रिक	(ब) कोनबर्ग व मथा	ई	प्र. 16.	डी.एन.ए. की अम्लीय प्र	कृति किसके कारण ह	ोती है?
	(स) जॉर्ज गेमो	(द) हरगोविन्द खुरान	ना (स)		(अ) नाइट्रोजनी क्षारक	(ब) हिस्टोन	
प्र. 8.	क्रोमोसोम के अन्दर				(स) फॉस्फेट समूह	(द) राइबोस शर्करा	(स)
	अर्धसंरक्षी होता है, इस			प्र. 17.	ग्रिफिथ ने अपने प्रयोग ि	केये-	
		ने(ब) टेलर व अन्य ने			(अ) E. Coli पर	(ब) स्यूडोमोनास प्रज	ाति पर
		ो (द) कोनबर्ग व मथाः			(स) न्यूमोकोकाई पर		
प्र. 9.	आनुवंशिक डिक्शनरी	में कुल कोडोनो की सं	ख्या है-				

प्र. 18. एक डी.एन.ए. रज्जुक में न्यूक्लियोटाइड आपस में किस

शेखाव	ाटी मिशन-100						सत्र : 2023-24
	बन्ध से जुड़े रहते है?				(अ) 2.4 करोड़	(ब) 3.4 करो	ङ
	(अ) ग्लाइकोसिडिक बन्ध(ब) फॉस्फोडाइएस्टर बन्ध				(स) 4.4 करोड़	(द) 5.4 करो	ভ় (अ)
	(स) पेप्टाइड बन्ध	(द) हाइड्रोजन बन्ध	(অ)	प्र. 28.	डी.एन.ए. खण्डों को ज	ोड़ने में उपयोग	किया जाने वाला
प्र. 19.	एक DNA में एडिनिन का प्रतिशत 30 % है तो ग्वानिन				एन्जाइम है।		
	का क्या प्रतिशत होगा?				(अ) डी.एन.ए. लाइगेज (ब) डी.एन.ए. पॉलीमरेज		
	(34) 10 %	(অ) 20 %			(स) डी.एन.ए. हेलीकेज	न (द) प्रतिबंधन	एन्जाइम (अ)
	(स) 30 %	(द) 40 %	(অ)	प्र. 29.	यदि दिये गये DNA		
	(Note- क्योंकि A+G का प्रतिशत 50 % होता है इस प्रकार ग्वानिन का 20 % होगा)				न्यूक्लियोटाइड्स की सं तो उस खण्ड में कुल न्यृ		•
प्र. 20.	अनुलेखन के दौरान यदि DNA में न्यूक्लियोटाइडों का क्रम ATACG है तो m-RNA न्यूक्लियोटाइडों का क्रम होगा?			у. 30.	(अ) 75	(অ) 750	
					(स) 225	(द) 300	(द)
					DNA रेप्लीकेशन की विधी होती है।		
	(अ) UAGCA	(অ) UAUGC			(अ) संरक्षी व एक दिशी	य(ब) अर्द्धसंरक्ष	ी और एकदिशीय
	(स) TATGC	(द) TCTGG	(অ)		(स) संरक्षी और द्विदिशी	य(द) अर्द्धसंरक्ष	
	निम्न में से कौनसा सही नहीं है?						(द)
	$(\Im) \frac{A}{T} = 1$	(অ) A+T=G+C			थान की पूर्ति कीजिए-		-> 0 >
	$(\mathbf{H}) \mathbf{A} + \mathbf{G} = \mathbf{C} + \mathbf{T}$	(द) कोई नहीं	(অ)	 Hn RNA में पाये जाने वाले वे खण्ड जो प्रोटीन संश्लेषण में भाग नहीं लेते है कहलाते है। 			
प्र. 22.	DNA में अनुलेखन इकाई का भाग नहीं है।			उत्तर	इन्ट्रॉन (अव्येक्तेक)		
	(अ) उन्नायक (प्रमोटर)	(ब) सरंचनात्मक		2.	प्रोटीन में अमीनो अम्लो के अनुक्रम को निर्धारित करने		
	(स) लैक ओपेरॉन	(द) समापक	(स)	वाली विधि के विकास का श्रेय को जाता है। उत्तर फ्रेडरिक सेगंर।			
ਸ਼. 23.	मनुष्य के अगुणित डी.एन.ए. में कितने क्षार युग्म होते है?				फ्रेडरिक सेगंर।		
	(अ) 5.5×10^7	(অ) 4.6×10^6		3.	केन्द्रक में मिलने वाले अम्लीय पदार्थ DNA की खोज ने की थी। फ्रेडरीच मेस्चर ने		
	(स) 3.3 × 10 ⁹	(द) 6.3×10^8	(स)	उत्तर			
प्र. 24.	DNA में क्षार युग्मों की परस्पर दूरी होती है-			4.	पारम्भ कोडोन का कार्य करता है।		
	(अ) 20 A ^o	(অ) 3.4 A ^o		न. उत्तर	AUG		
	(स) 34 A ^o	(द) 10 A ⁰	(ब)	5.		तो प्रस्मार जोट न	ने वाला गन्नादम
प्र. 25.	युकैरियोट्स में DNA के अनुलेखन के पश्चात बनने वाले			٥,	होता है।		
	RNA को कहते है-			उत्तर	DNA लाइगेज		
	(अ) r-RNA	(অ) m-RNA		6.	जीवाणुओं में आनुवंशिक	क पदार्थ	होता है।
	(स) t-RNA	(द) Hn-RNA	(द)	उत्तर	DNA		
प्र. 26.	पहला आनुवांशिक पदार्थ था।			7.	रूपान्तरण की खोज ने की थी।		
	(अ) DNA	(অ) RNA		उत्तर	ग्रिफिथ ने		
	(स) प्रोटीन	(द) CSC	(অ)	8.	एक न्यूक्लियोसोम में उ	डी.एन.ए. के	क्षारक युग्म
प्र. 27.	मानव में ज्ञात सबसे बड़ी जीन डिस्ट्राफिन में कितने करोड़				स्थित होते है।		
	क्षार पाए जाते है?			उत्तर	200		

सत्र: 2023-24

9. DNA की आण्विक संरचना में नाइट्रोजन क्षार बंध द्वारा पेन्टोज शर्करा से जुड़ता है।

उत्तर ग्लाइकोसिडिक

10. Hn RNA से इन्ट्रॉन्स को हटाने की प्रकिया कहलाती है।

उत्तर स्पलाईसिंग (splicing)

अतिलघुउत्तरात्मक प्रश्नोत्तर

प्र. 1. प्रोटीन संश्लेषण के दौरान AUG और UGA का कोडोन का क्या कार्य है?

उत्तर: - AUG शृंखला प्रारम्भ का कार्य करता है। यह मेथियोनिन नामक अमीनों अम्ल को कोड करता है। UGA पॉलीपेप्टाइड शृंखला के समापन का कार्य करता है।

प्र. 2. आनुवांशिक मानचित्र का मानव जीनोम परियोजना में क्या योगदान है?

उत्तर:- आनुवांशिक मानचित्र मानव जीनोम सीमाकारी एन्जाइम के पहचान स्थल की बहुरूपिता और निश्चित पुनरावर्ती DNA अनुक्रम की सूचना प्रदान करते है।

प्र. 3. मनुष्य के अगुणित DNA में कितने क्षार युग्म पाये जाते है?

उत्तर :- 3.3 × 10 9 क्षार युग्म

प्र. 4. Hn-RNA के सिरे पर किसकी पूँछ पायी जाती है?

उत्तर :- 3' सिरे पर पॉली A-(Polyadehylic acid) की पूँछ पाई जाती है। पूँछ में 200-300 न्यूक्लियोटाइड्स की शृंखला होती है।

प्र. 5. RNA आनुवांशिक पदार्थ के रूप में किसमें पाया जाता है?

उत्तर :- टोबैको मोजेक वाइरस व बीटा बैक्टिरीयोफेज में।

प्र. 6. DNA निर्भर DNA पॉलीमरेज द्वारा बहुलीकरण किस दिशा में होता है?

उत्तर :- 5' → 3'

प्र. 7. समपार (Cistron) या संरचनात्मक जीन किसे कहते है?

उत्तर :- DNA का वह खण्ड जो पॉलीपेप्टाइड का कूटलेखन करता है।

प्र. 8. व्यक्तेक (Exon) किसे कहते है?

उत्तर :- कूटलेखन अनुक्रम या अभिव्यक्त अनुक्रमों को व्यक्तेक कहते है।

प्र. 9. समबंधन (Splicing) किसे कहते है?

उत्तर :- Hn-RNA से इन्ट्रोन के अलग होने तथा Exon (व्यक्तेक) के निश्चित क्रम में जुड़ने की प्रक्रिया को समबंधन कहते है।

प्र. 10. लेक प्रचालेक में कौनसी जीन पाई जाती है?

उत्तर :- (1) नियामक जीन (2) वर्धक जीन (3) प्रचालक जीन (4) संरचनात्मक जीन (z जीन, y जीन, a जीन)

प्र. 11. पुनरावृत DNA किसे कहते है?

उत्तर:- जीनोम का वह भाग जिसमें DNA का एक छोटा भाग कई बार पुनरावृत होता है। ये प्रोटीन संश्लेषण के लिए RNA का अनुलेखन नहीं करते।

12. सबसे लम्बे जीन का नाम लिखिए।

उत्तर:- डिस्ट्रोफिन जीन सबसे बड़ी जीन है।

प्र. 13. पैलिण्ड्रोमिक अनुक्रम किसे कहते है?

उत्तर:- क्षार युग्मों के ऐसे अनुक्रम जिसे पढ़ने के अभिविन्यास को समान रखने पर डी.एन.ए. की दोनों लड़ियों को एक जैसा पढ़ा जाता है।

प्र. 14. सेन्ट्रल डोग्मा सिद्धान्त क्या है?

प्र. 15. नाइट्रोजनी क्षार व पेन्टोज शर्करा के बीच बन्ध क्या कहलाता है?

उत्तर:- N ग्लाइकोसिडिक बन्ध

प्र. 16. कोशिका चक्र की किस प्रावस्था में DNA प्रतिकृति करता है।

उत्तर :- S अवस्था में

प्र. 17. DNA पॉलीमरेज की खोज किसने की थी।

उत्तर:- कोरेनवर्ग ने ई. कोलाई में की थी।

प्र. 18. आनुवांशिक कूट क्या होता है?

उत्तर :- आनुवांशिक कूट एक सूक्ष्म ईकाई है जिसमें प्रोटीन संश्लेषण के लिए कूट संदेश निहित रहता है।

प्र. 19. बहुरूपता किसे कहते है?

उत्तर :- आनुवांशिक आधार पर विभिन्नता बहुरूपता कहलाती है। यह उत्परिवर्तन के कारण उत्पन्न होती है।

प्र. 20. एक ससीमकेन्द्री जीव के DNA की सरंचना हिस्टोन प्रोटीन में कौनसे अमीनों अम्ल अधिक मात्रा में पाए जाते है।

उत्तर:- आर्जीनिन एवं लाइजीन

प्र. 21. Sn RNP का पूरा नाम लिखिए

उत्तर:- लघुकेन्द्रकीय राइबोन्यूक्लियोप्रोटीन

प्र. 22. RNA में थायमीन के स्थान पर कौनसा क्षार होता है?

उत्तर:- यूरेसिल

दीर्घउत्तरात्मक प्रश्न

प्र. 1. न्युक्योसोम किसे कहते हैं? DNA कुण्डली की पैकेजिंग समझाइए। नामांकित चित्र भी बनाइए। (1+1+2)

उत्तर :- गुणसूत्र में DNA व हिस्टोन प्रोटीन मिलकर विशिष्ट इकाइयाँ बनाते है जिन्हें न्यूक्लियोसोम कहते है। DNA कुण्डली की पैकिजिंग में न्यूक्लियोसोम क्रोड कण व लिकंर DNA से मिलकर बनता है।

DNA कुण्डली की पैकेजिंग :-

- न्यूक्लियोसोम = क्रोड कण + DNA
- क्रोड कण = हिस्टोन प्रोटीन के 8 अणु (हिस्टोन अष्टक) = H,A, H,B, H,, H, के दो - दो अणु
- लिकर DNA = 60 क्षार युग्म का DNA
- H, प्रोटीन लिकर DNA से संबंधित रहता है।
- न्यूक्लियोसोम में धनावेशित हिस्टोन अष्टक के चारों और ऋणावेशित DNA लिपटा रहता है। एक न्यूक्लिसोम के DNA में लगभग 200 क्षार युग्म होते हैं।
- न्यूक्लियोसोम एक के बाद एक जुड़कर दानेदार माला या डोरी पर बीड्स की तरह दिखाई देता है। यह सरंचना क्रोमेटिन सूत्रों को निर्माण करती है।
- न्यक्लियोसोम युक्त DNA पुन: कुण्डलित होकर सोलेनाइड सरंचना बनता है। एक सोलेनाइड छ: न्यूक्लियोसोम से मिलकर बनता है।
- सोलेनोइड का बनना DNA का द्वितीय स्तर का कुण्डलन है इसके पश्चात तीन स्तरों का कुण्डल और होता है जिससे क्रोमेटिन सूत्र मध्यावस्था वाले गुणसूत्रों में परिवर्तित हो जाता है।
- क्रोमेटिन के उच्च स्तर पर पैंकेजिंग के लिए गैर गुणसूत्रीय प्रोटीन की आवश्यकता होती है।
- केन्द्रक में ढीले बंधे क्रोमेटीन हल्के अभिरंजित होते है, इन्हे यूक्रोमेटिन कहते है तथा अच्छी तरह बंधे क्रोमेटिन गहरे अभिरंजित होते है जिन्हे हेटेरोक्रोमेटिन कहते है।

प्र. 2. अर्ध-सरंक्षी प्रतिकृति से आपका क्या तात्पर्य है? DNA में अर्द्धसरंक्षी प्रतिकृति की क्रिया होती है को प्रमाणित करने के लिए मैथ्यू मेसेल्सन तथा फेंकलिन स्टाल द्वारा किये गए प्रयोग का वर्णन कीजिए। अर्धसरंक्षी DNA प्रतिकृतियन प्रतिरूप का चित्र बनाइए। (1+1+2)

उत्तर :- अर्द्धसंरक्षी प्रतिकृति - DNA अणु के दोनों सूत्र एक-दूसरे से अलग होकर अपने-अपने अस्तित्व को बनाये रखते है और प्रत्येक सूत्र कोशिका में उपलब्ध न्यूक्लियोटाइडों के कुण्ड से अपने सम्पूरक सूत्र का संश्लेषण करते है। इस प्रकार नये बने DNA अणु में एक सूत्र पूर्ववर्ती DNA अणु का एवं एक सूत्र नया संश्लेषित होता है अर्थात आधा पूर्व जैसा तथा आधा नया, इसे अर्द्ध सरंक्षी प्रतिकृति कहते है।

मैथ्यू मेसेलसन व फ्रेकंलिन स्टाल का प्रयोग -

- (i) इन्होने ई. कोलाई को ऐसे संवर्धन माध्यम में विकसित किया जिसमें $^{15}NH_4Cl$ (^{15}N नाइट्रोजन का भारी समस्थानिक) कई पीढ़ियों तक नाइट्रोजन का स्त्रोत था। इसके कारण नविनर्मित DNA एवं अन्य दूसरे नाइट्रोजन युक्त यौगिकों में ^{15}N व्यवस्थित हो जाता है। इस भारी DNA अणु को सामान्य DNA से सीजियम क्लोराइड (CsCl) के घनत्व प्रवणता में अपकेन्द्रीकरण कर पृथक कर सकता है।
- (ii) इसके बाद कोशिकाओं को ऐसे सर्वर्धन माध्यम में स्थानान्तरित किया जिसमें $^{14}NH_4Cl$ था। निश्चित समयांतराल पर गुणित कोशिकाओं के नमूनों से DNA पृथक करने पर पाया गया कि वह हमेशा द्विरज्जुक कुण्डलियों के रूप में मिलता है। प्राप्त नमूनों को CsCl की घनत्व प्रवणता पर पृथक किया गया।
- (iii) इस प्रकार सर्वर्धन जिसे 15 N से 14 N माध्यम पर एक

शेखावाटी मिशन-100

पीढ़ी तक स्थानान्तरित किया गया था, से DNA पृथक करने पर पाया गया कि इसका घनत्व संकरित या मध्य था। DNA जो दूसरी पीढ़ी के संवर्धन से पृथक किया गया, समान मात्रा में संकरित DNA से मिलकर बना होता है। इससे सिद्ध हुआ कि DNA प्रतिकृति अर्द्धसंरक्षी प्रकार की होती है।

प्र. 3. पुनरावृत्ति DNA किसे कहते है? अल्फ्रेड हर्षे व मार्था चेज के प्रयोग को सचित्र समझाइये कि DNA एक आनुवांशिक पदार्थ है?

उत्तर :- DNA फिंगरप्रिंट के लिए DNA अनुक्रम में कुछ विशिष्ट क्षेत्रों में विभिन्नता का पता लगाते है। इन स्थानों पर DNA का छोटा भाग कई बार पुरावृत होता है उसे पुरावृत्ति DNA कहते है।

आनुवांशिक पदार्थ <u>DNA</u> है

- हर्षे व चेज (1952) द्वारा प्रस्तुत प्रयोगों के परिणाम से यह सिद्ध हुआ है कि DNA आनुवांशिक पदार्थ है। इन्होनें उन विषाणुओं पर कार्य किया जो जीवाणु को संक्रमित करते है, इन्हे जीवाणुभोजी कहते है।

सत्र : 2023-24

- हर्षे एवं चेज के रेडियोधर्मी फॉस्फोरस ³²P व ³⁵S का प्रयोग करते हुए जीवाणु भोजी के जीवन चक्र का अध्ययन किया। उन्होंने ई. कोलाई जीवाणु को ³²P व ³⁵S रेडियोधर्मी तत्वों युक्त माध्यम पर संवर्धित किया। ये रेडियोधर्मी सिक्रय तत्व जीवाणु के विभिन्न घटकों में स्वांगीकृत हो जाते है।
- जीवाणुभोजी अपनी पुंछ द्वारा जीवाणु से चिपक जाता है इसके शीर्ष में उपस्थित DNA जीवाणु कोशिका में स्थानान्तरित हो जाता है
- 30 मिनट बाद जीवाणुभोजी जीवाणु की कोशिका का विघटन कर विमुक्त हो जाता है। विश्लेषण से ज्ञात हुआ कि इनके DNA में रेडियों सिक्रिय फास्फोरस P^{32} तथा बाह्य प्रोटीन केप्सिड में सल्फर S^{32} उपस्थित था।
- तत्पश्चात \mathbf{P}^{32} व \mathbf{S}^{35} युक्त जीवाणुभोजियों को सामान्य ई.कोलाई पर संक्रमण कराया गया।
- संक्रमण के कुछ मिनट बाद जीवाणु को अपकेन्द्रण द्वारा नष्ट कर जीवाणु तथा जीवाणु भोजी में रेडियोसक्रिय तत्वों का विश्लेषण किया गया।
- विश्लेषण में पाया गया कि जीवाणुभोजी का 95% 32 Pजो DNA में निहित है वह जीवाणु में अंतस्थापित हो जाता है, जबिक 35 S की सम्पूर्ण मात्रा जीवाणुभोजी की प्रोटीन खोल में विद्यमान रहती है। इससे संकेत मिलता है कि प्रोटीन विषाणु से जीवाणु में प्रवेश नहीं करता है। इससे सिद्ध होता है कि आनुवांशिक पदार्थ DNA ही है जो विषाणु से जीवाणु में आता है।

प्र. 4. मानव जीनोम परियोजना क्या है? मानव जीनोम परियोजना की विशेषताएँ लिखिए।

उत्तर :- किसी भी जीव की आनुवंशिक व्यवस्था उसके DNA में मिलने वाले अनुक्रम से निर्धारित होती है। दो विभिन्न व्यक्तियों में मिलने वाला DNA अनुक्रम कुछ जगहों पर भिन्न -भिन्न होता है। सन् 1990 में मानव जीनोम के अनुक्रमों को ज्ञात करने के लिए यह योजना प्रारम्भ की गई।

<u>मानव जीनोम की मुख्य विशेषताएँ:-</u>

- 1. मानव जीनोम में 3164.7 करोड़ न्यूक्लिओटाइड क्षार है।
- 2. औसतन जीन में 3000 क्षार होते है परंतु इनके आकार में विभिन्नताएँ मिलती है। मानव में ज्ञात सबसे बड़ी जीन डिसट्रॉफिन में 2.4 करोड़ क्षार होते है।
- 3. जीनों की संख्या 30,000 होती है तथा लगभग सभी व्यक्तियों में मिलने वाले न्यूक्लियोटाइड क्षार एकसमान होते

है।

- 4. दो प्रतिशत से कम जीनोम प्रोटीन का कूटलेखन करते है।
- 5. मानव जीनों के बहुत बड़े भाग का निर्माण पुनरावृत्ति अनुक्रम द्वारा होता है।

प्र. 5. फ्रेडिंरिक ग्रिफिथ द्वारा स्ट्रेप्टोकोकस न्यूमोनी पर किये गये प्रयोग का वर्णन कीजिए। उनके द्वारा निकाले गए निष्कर्ष की विवेचना कीजिए।

उत्तर :- फ्रेडरिक ग्रिफिथ नामक जीवाणु विज्ञानी सन 1928 मे मनुष्यों में न्यूमोनिया रोग के कारक जीवाणु स्ट्रेप्टोकोकस न्यूमोनी के विरूद्ध एक टीका (वैक्सीन) विकसित करने का प्रयास कर रहे थे। इसी दौरान उन्होंने जीवाणुओं में रूपातंरण प्रक्रिया खोज की। स्ट्रेप्टोकोकस न्यूमोनी जीवाणुओं को जब सर्वर्धन माध्यम पर उगाया जाता है तब इनके दो निम्न विभेद आसानी से पहचाने जा सकते है।

सत्र : 2023-24

स्टेप्टोकोकस न्यूमोनी (दो विभेद)

S - प्रभेद

R - प्रभेद

- चिकनी स्मूद कॉलोनी बनाते है।
- सर्वर्धन माध्यम में खुरदरी कोलॉनी बनाते है।
- केप्सूल पर म्यूको
 पोलीसेकेराइड का आवरण
 पाया जाता है।
- अनुपस्थित होता है। I
- रोगकारी व उग्र होते है। रोग उत्पन्न करने में समक्षम नहीं एवं अनुग्र होते है।

प्रयोग -

- 1. S प्रभेद (जीवित) चूहे में इंजेक्ट चूहा मर गया।
- 2. R प्रभेद (जीवित) चूहे में इंजेक्ट चूहा जीवित रहा।
- 3. S प्रभेद (मृत) चूहे में इंजेक्ट चूहा जीवित रहा।

ग्रिफिथ ने निष्कर्ष निकाला की मृत S –प्रभेद के जीवाणुओं से निकले किसी रूपान्तरणकारी पदार्थ ने R-प्रभेद को S में रूपातंरित कर दिया जिससे R–प्रभेद के जीवाणुओं में चिकना पॉलीसैकेराइड केप्सूल का निर्माण हो गया। उन्होनें बताया की ऐसा आनुवांशिक पदार्थ के स्थानांतरण से ही संभव है। लेकिन उनके प्रयोगों से आनुवांशिक पदार्थ की जैव रासायानिक प्रकृति स्पष्ट नहीं हुई।

प्र. 6. व्याख्या कीजिए की लेक ऑपेरॉन कै से जीवाणु E-कोलाई में प्रेरक की उपस्थिति एवं अनुपस्थिति में कार्य करता है?

उत्तर :- लैक ओपेरॉन की कार्य प्रणाली :-

इस क्रिया का अध्ययन E- कोलाई में किया गया था। यह जीवाणु लेक्टोज का जल अपघटन कर ग्लूकोज व ग्लेक्टोज में विघटित कर देता है व इसे ऊर्जा स्त्रोत के रूप में काम लेता है। लेक्टोज को लेक ऑपेरॉन का प्रेरक भी कहा गया है।

प्रेरक की अनुपस्थिति में :- जब जीवाणु के सवंर्धन माध्यम में लेक्टोज नहीं होता है तो सरचंनात्मक जीनों के उत्पाद की आवश्यकता नहीं होती इस स्थिति में नियामक जीन से एक दमनकारी उत्पाद बनता है जो कि ऑपरेटर जीन से जुड़ जाता है इस कारण से RNA पॉलीमरेज एंजाइम ऑपरेटर से नहीं जुड़ पाता और संरचनात्मक जीनों से B ग्लैक्टोसाइट का निर्माण नहीं होता है।

प्रेरक की उपस्थिति में :- जब जीवाणु के सवंर्धन माध्यम में लेक्टोज की उपस्थिति होती है तो कुछ लेक्टोज अणु जीवाणु कोशिका के अन्दर पहुँच जाते है ये जीवाणु कोशिका में दमनकारी से क्रिया कर उसे अक्रिय बना देते है अक्रिय पॉलीमरेज प्रमोटर से जुड़कर अनुलेखन प्रारंभ कर देता है इस तरह से लेक्टोज को लेक-ओपेरॉन को स्विच ऑन तथा ऑफ करने का प्रेरक कहा जाता है।

प्र. 7. DNA अंगुलीछाप क्या है? इस प्रक्रिया का सिद्धांत, प्रमुख चरण तथा इसकी उपयोगिता पर प्रकाश डालिए।

उत्तर :- DNA अंगुलीछाप :- DNA अंगुलीछाप व्यक्तियों में DNA स्तर पर पाई जाने वाली विभिन्नताओं की पहचान करने की तकनीक हैं।

DNA अंगुलीछाप का सिद्धांत :- आनुवंशिक बहुरूपता जो व्यक्तियों में VNTR के रूप में परिलक्षित होती है, का विश्लेषण ही इस तकनीक का आधार है। जीनोम का वह स्थान जहाँ एक छोटा न्यूक्लियोटाइड अनुक्रम एक के बाद एक क्रम में दोहराया जाता है, VNTR कहलाता है। यह लम्बाई में भिन्तता प्रदर्शित करते है। ऐसी प्रत्येक विविधता एक अलील की तरह वंशागत होती है जिससे उन्हे उस व्यक्ति की या उसके माता-पिता की पहचान के रूप में प्रयोग किया जा सकता है।

DNA फिगंरप्रिंटिंग के चरण :-

- 1. DNA को पृथक करना।
- 2. रेस्ट्रीकशन एण्डोन्यूक्लिएज द्वारा DNA को खण्डों में तोडना।
- 3. इलेक्ट्रोफोरेसिस द्वारा खण्डों का पृथक्करण।
- 4. पृथक हुए DNA खण्डों को नाइट्रोसेल्यूलोज झिल्ली पर स्थानांतरित करना। (सर्दन ब्लाटिंग)
- 5. प्रोब द्वारा चिह्नित VNTR का DNA सकंरण।
- 6. संकरित DNA खण्डों की ऑटोरेडियोग्राफी द्वारा जाँच।

DNA फिंगरप्रिटिंग की उपयोगिता-

- 1. DNA फिंगरप्रिटिंग का अपराध विज्ञान में रक्त कोशिका, त्वचा, लार, वीर्य, हेयर, फॉलिकिल आदि की जाँच द्वारा अपराधी/पीड़ित की पहचान करने में प्रयोग किया जाता है।
- 2. इसका प्रयोग पैतृकता विवादों में सुलझाने में किया जाता है।
- 3. आनुवांशिक विविधता के निर्धारण में जेनेटिक प्रोफाइल

का प्रयोग होता है।

4. जनसंख्या अध्ययन, जैव विकास, मानव इतिहास की खोज आदि हेतु भी इसी तकनीक का सहारा लिया जाता है।

प्र. 8. DNA को परिभाषित कीजिए। द्विकुण्डलीय DNA की संरचना की विशेषताएँ लिखिए। द्विकुण्डली DNA का नामांकित चित्र बनाइए।

उत्तर :- DNA :- लगभग सभी कोशिकीय जीवों का आनुवांशिक पदार्थ जो डी ऑक्सी राइबोन्यूक्लियोटाइड इकाइयों का बना होता है जो वंशागत लक्षणों का एक पीढ़ी से दूसरी पीढ़ी तक स्थानान्तरित करता है, DNA कहलाता है।

द्विकुण्डली DNA की संरचना की मुख्य विशेषताएँ:-

- 1. DNA द्विकुण्डलीय संरचना है।
- इसमें पॉलीन्यूक्लियोटाइडो की दो शृंखलाएँ दुर्बल हाइड्रोजन बंधों द्वारा जुड़ी होती है।
- 3. दोनों शृंखलाओं के क्षारक एक -दूसरे के पूरक होते है।
- 4. एक शृंखला का प्यूरिन (A,G) दूसरी शृखंला के पिरीमिडीन (T,C) से दुर्बल हाइड्रोजन बंधों द्वारा जुड़े रहते है इससे क्षार युग्मों का निर्माण होता है।
- 5. एक शृंखला का A दूसरी शृंखला के Tसे द्विबंध द्वारा तथा इसी प्रकार एक शृंखला का G दूसरी शृंखला के C से त्रिबंध द्वारा जुड़ कर क्षार युग्म बनाते है। अत: T व A तथा G व C की मात्रा बराबर रहती है। (चारगॉफ का तुल्यता नियम A=T. G=C)
- 6. DNA की दोनों शृंखलाएँ प्राय: एक सामान्य अक्ष पर दाहिने हाथ की ओर कुण्डलित रहती है। इस प्रकार के DNA को B-DNAकहते है
- 7. DNA की एक कुण्डली की लम्बाई $34A^{\circ}$ (3.4 नेनोमीटर) चौड़ाई $20A^{\circ}$ (20 नेनोमीटर), दो निकटवर्ती क्षार युग्मों या न्यूक्लिऔटाइडों के बीच की दूरी $3.4A^{\circ}$ होती है।
- 8. DNA की एक कुण्डली में 10 क्षार युग्म पाये जाते है।

DNA की द्विकुण्डलीय संरचना

प्र. 9. अनुलेखन इकाई से क्या तात्पर्य है? जीवाणु में अनुलेखन प्रक्रिया को नामांकित चित्र बनाकर समझाइए।

उत्तर:- DNA की एक रज्जुक से आनुवंशिक सूचनाओं का RNA में प्रतिलिपिकरण की प्रक्रिया को अनुलेखन कहते है।

जीवाणुओं में अनुलेखन की क्रिया एक ही RNA पॉलीमरेज एंजाइम द्वारा की जाती है। RNA पॉलीमरेज एंजाइम अनुलेखन के प्रारम्भ होने वाले DNA का वर्धक व प्रमोटर स्थल को पहचानने में सहायता करता है। इस एंजाइम के दो भाग होते है– क्रोड एंजाइम तथा क्रोड एंजाइम के साथ जुड़ने वाला सिग्मा कारक (σ) जो कि RNA का संवर्धन का प्रारंभन करता है।

RNA के संवर्धन में (DNA के अनुलेखन की क्रिया में) में क्रोड RNA पॉलीमरेज का सिग्मा कारक से सम्बन्ध होकर सिक्रय हो जाता है। वर्धक स्थल पर 5 युक्त RNA पॉलीमरेज का बंधन हो जाता है। इस स्थान से DNA रुज्जुक खुल जाता है। दोनों रुज्जुकों में से केवल एक रुज्जुक पर ही संदेशवाहक RNA अणु का निर्माण होता है।

प्रधान रज्जुक फर्मे की भाँति काम करता है। प्रधान रज्जुक के क्षारक क्रमों के अनुसार RNA रज्जुक पर क्षारक आते जाते है। इस प्रकार RNA शृंखला का निर्माण होता है व RNA पाँलीमरेज आगे बढ़ता चला जाता है और अंत में एक विशेष कारक RHO की उपस्थिति में समापन हो जाता है तथा पाँलीमरेज एन्जाइम अलग हो जाता है। इस प्रकार RNA रज्जुक का निर्माण पूरा हो जाता है।

प्र. 10. निम्न पर टिप्पणी लिखिए।

1. आनुवंशिक कूट 2. t-RNA 3. m-RNA

उत्तर :- 1. आनुवंशिक कूट :- आनुवंशिक कूट प्रारंभिक काल से उपस्थित वह सार्वित्रिक कोड है जो सभी जीवधारियों में आनुवंशिक सूचना के आधार पर प्रोटीन संश्लेषण को विशिष्टकृत करता है। इस आनुवांशिक भाषा का प्रत्येक कोड वर्ड या संकेताक्षर (कोडोन) तीन अक्षरों का बना होता है जो m-RNA के न्यूक्लियोटाइडों के संकेत (AUGC) है तथा कोडोन प्रोटीनों में पाये जाने वाले 20 अमीनों अम्लों में से किसी एक को इंगित करता है।

2. t-RNA :- इसे S- RNA(Soluble RNA) भी कहते

है ।

रॉबर्ट होले ने t-RNA की संरचना का तिपितया की पत्ती प्रतिरूप दिया। t-RNA एक सघन अणु है जो वास्तव में उल्टे L के समान दिखाई देता है।

क्लोवर पत्ती प्रतिरूप के अनुसार t-RNA में एक पॉलीन्यूक्लिओटाइड शृंखला मुड़कर 5- भुजा बनाती है – 1. ग्राही भुजा 2. DHU भुजा 3. एंटीकोडोन 4. अतिरिक्त भुजा 5. $T\psi C$ भुजा।

t- RNA ग्राही भुजा पर अमीनों अम्ल स्वीकार्य छोर होता है इसके 3ं सिरे पर अमीनों अम्ल जुड़ता है।

शृंखला-समापन रोध के लिए कोई भी t-RNA नहीं होता है।

(3) m-RNA :- m-RNA में शृंखलाबद्ध रूप से प्रकूट होते है । m-RNA के एक किनारे पर प्रारंभिक प्रकूट (AUG) होता है तथा दूसरे किनारे पर समापक या रोध प्रकूट (UAA/UAG/UGA) होते है । m-RNA में कुछ अतिरिक्त अनुक्रम पाये जाते है, जिनका अनुवादन नहीं होता है, उन्हें अनअनुवादित या अस्थानांतरित स्थल (UTR) कहते है । ये m-RNA के

दोनों किनारों (5` व 3`) पर प्रारंभक प्रकूट से पहले व समापन प्रकृट में पाये जाते है।

प्र. 11. सेन्ट्रल डोग्मा सिद्धांत क्या है? अनुवादन के विभिन्न चरणों को समझााइए।

उत्तर :- सेन्ट्रल डोग्मा सिद्धांत :- आण्विक जीव विज्ञान में फ्रांसिस क्रिक ने सेंट्रल डोग्मा का विचार किया। सिद्धांत के अनुसार आनुवंशिक सूचनाओं का बहाव DNA से RNA व इससे प्रोटीन की ओर होता है। DNA → RNA → प्रोटीन यद्यपि कुछ विषाणुओं में यह बहाव विपरीत दिशा अर्थात RNA से DNA की ओर होता है।

अनुवादन की प्रक्रिया में निम्न चरण सम्पन्न होते है:-

(i) A.A. की सक्रियण तथा t-RNA से जुड़ना:-एंजाइम

$$A.A. + ATP \xrightarrow{\frac{\text{ऐबाइ म}}{Mg^{+2}}} A.A Amp$$
 (एमीनो एसाइल AMP)

Charged A.A

 $A.A.AMP + t-RNA(3') \xrightarrow{t-RNA \text{ फिल्येटेन एजांद म}} A.A.-t-RNA$

(ii) राइबोसोम की भूमिका:- राइबोसोम की छोटी इकाई m-RNA से जुड़ जाती है व प्रारंभन DNA का निर्माण करती है तत्पश्चात बड़ी उपइकाई भी आकर इससे जुड़ जाती है और सिक्रय राइबोसोम बनता है एक सिक्रय राइबोसोम में तीन स्थल होते है।

पॉलीपेप्टाइड शृंखला के निर्माण के तीन चरण होते है :-

(1) प्रारंभन :- राइबोसोम की छोटी उप-इकाई m-RNA से जुड़ती है। इन दोनों के जुड़ने से m-RNA पर स्थित राइबोसोमल RNA पहचान अनुक्रम में मदद करते है। प्रारम्भिक t-RNA P स्थल पर आकर जुड़ता है। साथ ही प्रारंभिक t-RNA जिस पर कोडोन UAC होता है। m-RNA के प्रारंभिक कोडोन AUG से जुड़ जाता है इस क्रिया के अनेक प्रारंभिक फेक्टर की आवश्यकता होती है।

- (2) दीर्घीकरण :- तत्पश्चात दूसरे चार्जड t-RNA जो सिक्रय AA से जुड़ा हुआ है m-RNA पर अगले कोडोन से H बंध द्वारा जुड़ जाता है अगला कोडोन राइबोसोम की बड़ी उपइकाई का A स्थल होता है अब P स्थल पर उपस्थित प्रथम A.A. एवं A स्थल पर द्वितीयक A.A. के मध्य पेप्टाइड बंध का निर्माण होता है यह क्रिया पेप्टाइडल ट्रांसपरेज एंजाइम द्वारा उत्प्रेरित होती है तत्पश्चात राइबोसोम m-RNA पर 5'→3' दिशा में गित करता है और पेप्टाइड बंध से जुड़े हुए ऐमिनो अम्ल E स्थल पर ट्रांसफर हो जाते है और A स्थल मुक्त हो जाते है। इस प्रकार से A- स्थल पर निरतंर नये A. A. जुड़ते है और पॉलीपेप्टाइड शृंखला आगे बढ़ती है।
- (3) समापन व पॉलीपेप्टाइड की मुक्ति जब m-RNA का समापन कोडोन (UAA, UAG, UGA) A स्थल पर पहुँचता है तो शृंखला निर्माण रूक जाता है क्योंकि इन कोडोनों के लिए कोई t-RNA नहीं होता है। एक प्रोटीन जिसे, मुक्ति कारक या रिलीज फैक्टर कहते है जो A स्थल पर जुड़कर पॉलीपेप्टाइड की मुक्ति में मदद करती है, राइबोसोम भी अब m-RNA से अलग हो जाता है।
- यूकैरियोटिक कोशिका में आरंभन कम से कम कारकों जैसे eIF,, eIF,आदि की उपस्थिति में होता है।
- प्रोकैरियोटिक कोशिका में आरम्भन कारक $ext{IF}_3$ जटिल है।
- रिलीज फैक्टर को $(\mathbf{RF}_1,\,\mathbf{RF}_2,\,\mathbf{RF}_3)$ नाम दिय गये है ।

विकास

अंकभार -3, वस्तुनिष्ठ - 1(½ अंक) रिक्त स्थान - 1(½ अंक) अतिलघुउत्तरात्मक - 2(प्रत्येक 1 अंक)

वस्तुनिष्ठ प्रश्नः-

- पेंग्विन एवं डॉल्फिन के पक्ष के उदाहरण है-
 - (अ) अभिसारी विकास का
 - (ब) औद्योगिक मैलेनिज्म का
 - (स) प्राकृतिक वरण का
 - (द) अनुकूली विकिरण का

(अ)

- 2. मिलर ने अपने प्रयोग में बंद फ्लास्क में किसका मिश्रण कर ऐमिनों अम्ल उत्पन्न किये-
 - (अ) 800°C पर CH,,H,,NH, और जलवाष्प
 - (ब) 600°C पर CH₄, H₂, NH₃ और जलवाष्प
 - (स) 600°C पर CH₃, H₂, NH₃ और जलवाष्प
 - (द) 800°C पर CH, H, NH, और जलवाष्प (द)
- 3. अनेक कशेरूिकयों के अग्रपाद की अस्थि संरचना में समानता किसका उदाहरण है?
 - (अ) अभिसारी विकास (ब) तुल्यरूपता
 - (स) समजातता
- (द) अनुकूली विकिरण (स)
- 4. मिलर के प्रयोग में निम्नलिखित में से कौन अनुपस्थित था?
 - (अ) CH,
- (অ) H,
- (स) NH,
- (द) O,
- (द)
- निम्नलिखित अपसारी विकास के उदाहरण में से गलत विकास का चयन कीजिए-
 - (अ) चमगादड़, मनुष्य एवं चीता का मस्तिष्क
 - (ब) चमगादड़, मानव एवं चीता का हृदय
 - (स) मानव, चमगादड़ एवं चीता के अग्रपाद
 - (द) ऑक्टोपस, चमगादड एवं मानव की आँखे। (द)
- 6. आदिमानव से अभिनव मानव तक मानव विकास का कालानुक्रमिक क्रम है?
 - (अ) रामापिथेकस हौमोहैबिलिस ऑस्ट्रेलौपिथेकस -होमोइरेक्टस
 - (ब) ऑस्ट्रेलोपिथेक्स हौमोहैबिलिस रामापिथेकस -होमोइरेक्टस
 - (स) ऑस्ट्रेलोपिथेकस रामापिथेकस होमोहैबिलिस -होमो इरेक्टस

- (द) रामापिथेकस ऑस्ट्रेलोपिथेकस होमोहैबिलिस -होमो इरेक्टस (द)
- 7. पक्षी के पंख और कीट के पंख-
 - (अ) अनुरूप संरचनाएँ और अभिसारी विकास को दर्शाती है।
 - (ब) वंशावली संरचनाएँ और अपसारी विकास को दर्शाती है।
 - (स) समजातीय संरचनाएँ है और अभिसारी विकास को दर्शाती है।
 - (द) समाजातीय संरचनाएँ अपसारी विकास को दर्शाती है। (अ)
- 8. अपने पूर्वजों से विकसित होने के दौरान आधुनिक मानव (होमो सैपिएन्स) की सर्वाधिक महत्वपूर्ण प्रवृति क्या रही थी-
 - (अ) जबड़ो का छोटा होते जाना
 - (ब) द्विनेत्रीय दृष्टि
 - (स) बढती जाती कपाल धारिता
 - (द) सीधी खड़ी देह भंगिमा
- 9. डार्विन फिंच एक अच्छा उदाहण है-
 - (अ) औद्योगिक मीलेनीकरण का
 - (ब) संयोजी कड़ी का
 - (स) अनुकूली विकिरण का
 - (द) अभिसारी जैव विकास का
- 10. जब विभिन्न वंशवृतों की दो स्पीशीज अनुकूलनों के कारण एक-दूसरे के समान दिखने लगती है, तब इस परिघटना को क्या कहा जाता है?
 - (अ) अपसारी विकास (ब)
- (ब) अभिसारी विकास
 - (स) सूक्ष्म विकास
- (द) सह-विकास
- (ब) स्रके गण में

(स)

(स)

- गैलापागॉस द्वीप समूह के फिंच पक्षी किस एक के पक्ष में प्रमाण प्रस्तुत करते है?
 - (अ) विशिष्ट सृजन
- (ब) प्रतिगामी विकास
- (स) उत्परिवर्तन के कारण हुआ विकास
- (द) जैव-भौगोलिक विकास
- (द)

11.

- 12. किस मानव ने अपने शरीर की रक्षा हेतु खालों का उपयोग करना तथा मृतकों को भूमि के अंदर गाड़ना प्रारंभ किया-
 - (अ) होमो हैबिलिस
- (ब) नियंडरथल मानव
- (स) जावा मानव
- (द) होमो इरेक्टस (ब)

रिक्त स्थानों की पूर्ति कीजिए:-

- 1. मिलर ने अपने प्रयोग की समाप्ति पर फ्लास्क में एमीनों अम्लों का मिश्रण प्राप्त किया।
- 2. जीवन की उत्पत्ती के अंतर्गत उत्पन्न प्रथम जीव थे।
- क्ल, चमगादड़, चीता एवं मानव के अग्रपादो की अस्थियों में समजातता....... विकास को व्यक्त करती है।
- 4. डार्विन की फिंच का सर्वोत्तम उदाहरण है।
- 5. डार्विनवाद की दो मुख्य संकल्पनाएं है।
- 6. डी ब्रीज के अनुसार प्रजाति की उत्पति का मुख्य कारण है।
- 7.का रेप्टाइल्स (सरीसृपों) का स्वर्णिम काल कहते है।
- कीटो में DDT के प्रति प्रतिरोधकता का विकास को व्यक्ति करता है।
- 9. दक्षिणी अफ्रीका की पूर्वी सागर तट से 1938 में पकड़ी गयी को मछलियों एवं उभयचरों के बीच की संयोजक कड़ी कहते है।
- 10.मानव की दिमागी क्षमता जीवित आधुनिक मानव के समान है।

उत्तर:-

1. ग्लाइसीन एवं एलैनिन, 2. परपोषी, 3. अपसारी, 4. अनुकूलनी विकिरण 5. शारबनी आरोहण एवं प्राकृतिक वरण, 6. उत्परिवर्तन, 7. मीसोजोइक महाकल्प, 8. दिशात्मक प्राकृतिक वरण, 9. सीलाकैंथ मछली, 10. निएन्डरथल

अतिलघुउत्तरात्मक प्रश्नः-

- 1. होमोसेपियन्स का विकास किस महाद्वीप में हुआ?
- उत्तर अफ्रीका महाद्वीप में
- 2. आनुवांशिक अपवाह को परिभाषित कीजिए।
- उत्तर एक समिष्ट की एलील आवृती में केवल संयोगवश यादृच्छिक परिवर्तन होता है तो इसे आनुवांशिक अपवाह कहते है।
- 3. ''जीवन का पहला स्वरूप पूर्व विधमान जीवन रहित कार्बनिक अणु से हुआ है।'' यह किन वैज्ञानिको ने प्रस्तावित किया?
- उत्तर ऑपेरीन (रूस)एवं हाल्डेन (इंग्लेड)ने।

- मिल्की वे नामक आकाशगंगा के सौर मंडल में पृथ्वी की रचना कितने वर्ष पूर्व हुई है?
- उत्तर 4.5 बिलियन (450 करोड़) वर्ष पूर्व।
- ड्रायोपिथिकस तथा रामापिथिकस नर वानरों में अंतर बताइए।
- उत्तर ड्रायोपिथिकस वनमानुष (ऐप) जैसे थे जबकि रामापिथिकस मनुष्यों से अधिक समानता रखते थे।
- प्राकृतिक वरण सिद्धांत किस वैज्ञानिक ने दिया?
- उत्तर चार्ल्स डार्विन ने।
- जीवाश्मों की आयु की गणना के लिए प्रयुक्त विधि का नाम लिखिए।
- उत्तर रेडियो एक्टिव तिथि निर्धारण।
- 8. ड्रायोपिथिकस तथा रामापिथिकस नर वानर में दो समानताएं लिखिए।
- उत्तर 1. इनके शरीर पर सघन बाल थे।
 - 2. ये गोरिल्ला व चिम्पैंजी जैसे चलते थे।
- 9. डी व्रीज के अनुसार उद्विकास का कारण लिखए।
- उत्तर डी व्रीज के अनुसार उद्विकास का कारण 'साल्टेशन' अर्थात् विशाल उत्परिवर्तन का बड़ा कदम है।
- 10. बिग बैंग या महाविस्फोट सिद्धांत क्या है?
- उत्तर इस सिद्धांत के अनुसार ब्रह्माण्ड की उत्पत्ति अतितप्त कॉस्मिक धूल के बादल में महाविस्फोट के फलस्वरूप 20,000 करोड़ वर्ष पहले हुई थी।
- 11. पृथ्वी पर जीवन की उत्पत्ति कब हुई थी?
- उत्तर 400 करोड़ वर्ष पूर्व।
- 12. लुई पाश्चर ने अपने प्रयोग द्वारा विकास से सम्बन्धित किस सिद्धांत का खण्डन किया था?
- उत्तर स्वतः जनन सिद्धांत का।
- 13. प्रथम अकोशिकीय रूप में उत्पत्ति कब हुई?
- उत्तर 300 करोड़ वर्ष पहले।
- 14. पादपों में समजात व समवृति (तुल्यरूपी) अंगो के उदाहरण लिखिए-
- उत्तर समजात अंग बोगनिविलिया के कांटे व कुकरिबटा के प्रतान समवृत्ति (तुल्यरूपी) अंग – शकरकंदी की रूपांतरित जड़ व आलू का रुपांतरित तना (कंद)
- 15. डार्विन ने किस जहाज पर विश्वयात्रा की और विकास से सम्बंधित निष्कर्ष निकाले?

शेखावाटी मिशन-100

सत्र: 2023-24

उत्तर एच.एम.एस. बीगल

16. डार्विन फिन्चे किसे कहते है?

उत्तर डार्विन ने अपनी विश्वयात्रा के दौरान गेलेपेगॉस नामक द्वीप समूह पर कई प्रकार की काली छोटी चिड़ियाएँ देखी, जिन्हें डार्विन फिन्चे कहते है।

17. अनुहरण किसे कहते है?

उत्तर जंतुओं का वह गुण जिसमें वे अपने आवास के समान दिखायी देते है।

18. डार्विन समिष्ट के संदर्भ में किए गये किसके कार्यों से प्रभावित थे।

उत्तर थॉमस माल्थस

19. साल्टेशन का अर्थ है?

उत्तर विशाल उत्परिवर्तन का बड़ा कदम

हार्डी वेनबर्ग सिद्धांत से सम्बंधित समीकरण लिखिए।

उत्तर $p^2+2pq+q^2=1$

21. विकास रूप में प्रथम स्तनधारी प्राणी का नाम लिखिए।

उत्तर श्रू

22. किस वैज्ञानिक ने द. अमेरिका व द.पू. एशिया की यात्रा कर लगभग डार्विन के समान ही निष्कर्ष निकाले?

उत्तर अल्फ्रेड वॉलेस

23. अल्फ्रेड वॉलेस ने विकास सम्बन्धी कार्य किस पर किया था?

उत्तर मलयआर्क पेलैगो पर

24. डार्विन की दो मुख्य संकल्पनाएँ कौनसी है?

उत्तर 1. शाखनी अवरोहण

2. प्राकृतिक वरण

25. मानव विकास क्रम में किस मानव की दिमागी क्षमता 650-800 CC के मध्य थी?

उत्तर होमो हेबिलिस।

26. नियंडरयल मानव की दिमागी क्षमता कितनी थी?

उत्तर 1400 CC

27. अनुकूली विकिरण किसे कहते है?

जब एक ही पूर्वज से विभिन्न जातियों का उद्विकास होता है तो इसे अनुकूली विकिरण या अपसारी जैवविकास कहा जाता है।

उत्तर

शेखावाटी मिशन 100 की कक्षा 10 एवं 12 के विभिन्न विषयों की नवीनतम बुकलेट डाउनलोड करने हेतु टेलीग्राम QR CODE स्कैन करें। अध्याय **7**

मानव स्वास्थ्य और रोग

अंकभार = 6, वस्तुनिष्ठ - 1 (½ अंक) रिक्त स्थान - 1(½ अंक) अतिलघुउत्तरात्मक- 1(1 अंक), निबंधात्मक -1(4 अंक)

				•		<u> </u>	
वस्तुनि	ष्ठ प्रश्न:-			9.	निम्न में से कौनसा स्व	a- प्रतिरक्षा रोग का उदाह	रण है?
1.	विश्व एड्स दिवस मना	या जाता है?			(अ) एड्स	(ब) आमवाती संधिशो	थि
	(अ) 22 मार्च	(ब) 1 दिसम्बर			(स) कैंसर	(द) हाथीपॉव	(ब)
	(स) 28 फरवरी	(द) 31 दिसम्बर	(অ)	10.	मलेरिया रोग में कंपकं	ज्पी का कारण है-	
2.)∕ खीस में पायी जाने	ने वाली		(अ) हीमोजॉइन	(ब) हिप्नोटोक्सिन	
	एंटीबॉडीज है-				(स) हीमेटीन	(द) मीरोजोइट्स	(अ)
	(अ) IgA	(অ) IgE		11.		ायर्ड इम्यूनों डेफीशिएन्सी	
	(स) IgM	(द) IgG	(अ)			देह है। इसकी पुष्टि हेतु अ	· •
3.		के इंजेक्शन द्वारा उत्पन्न व	क्री जाती		वैज्ञानिक तकनीक क		
	है?	(-) :: (-) -)			(अ) MRI	(ब) अल्ट्रासाउण्ड	
	(अ) एंटीजन से (स) दुर्बल जीवाणुओं द्व				(स) विडाल	(द) ELISA	(द)
	(स) दुबल जावाणुआ ह (द) प्रतिजैविक से	ारा टाकाकरण स	(অ)	12.	मानव शरीर में कोशि	का माध्यित प्रतिरक्षा किर	सके द्वारा
4.		कारण से एड्स फैलता है-	` '		कार्यान्वित होती है?		
7.	(अ) संक्रमित सुइयो तथ	• •	_		(अ) T- लिम्फोसाइट्र	स (ब) B - लिम्फोसाइट	र्स
	(ब) मच्छरो के काटने सं				(स) प्लेटलेट्स	(द) थ्रोम्बोसाइट	(अ)
	(स) एड्स ग्रसित व्यकि			13.	मनुष्य में दाद नामक र	रोग उत्पन्न होता है-	
	•	लगाने, छिंकने व खांसने से	ते (अ)		(अ) जीवाणु द्वारा	(ब) कवक द्वारा	
5.		ोज करने वाले वैज्ञानिक है			(स) विषाणु द्वारा	(द) निमेटोड द्वारा	(ৰ)
	(अ) विलियम हार्वे	(ब) रॉबर्ट हुक		14.	कैंसर उत्पन्न करने वा	ले विषाणु (वायरस) कह	हलाते है-
	(स) श्लाइडेन व श्वान	(द) रॉबर्ट ब्राउन	(अ)			ु गरस (ब) प्रोटो आंकोजेनिव	
6.	उपार्जित प्रतिरक्षा की वि	त्रशेषता होती है-			्स) मेटास्टेसिस वाय		
	(अ) एण्टीजन की विशि	ाष्टता			(द) कीटो आंकोजेनिव		(अ)
	(ब) विभेदन करना (से	ल्फ तथा नॉन-सेल्फ एंटीज	न में)	15.		ें के लिए मच्छर के लार्वा व	
	(स) स्मृति	(द) उपरोक्त सभी	(द)	15.	करने वाली मछली है-	•	m iqisi
7.	· · · · · · · · · · · · · · · · · · ·	में कौनसी प्रतिरक्षा प्रणाल	गी उत्पन्न		(अ) बारबस	(ब) लेबियो	
	होगी-				(स) गेम्बुसिया	(द) एक्सोसीट्स	(स)
	(अ) स्व - प्रतिरक्षा			16.		री उपयोग से सबसे ज्यादा	
	(स) निष्क्रिय प्रतिरक्षा	(द) स्वाभाविक प्रतिरक्ष	ग़ (स)		किस अंग की क्षति हो	•	(4)4) ****
8.	असंक्रामक रोग का उद				(अ) आमाशय	(ब) मलाशय	
	(अ) सामान्य जुकाम	(ब) दाद	, .		(स) फेफड़े	(द) यकृत	(द)
	(स) कैंसर	(द) टाइफाइड	(स)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	` '/

- 17. एलर्जी, मास्ट कोशिकाओं से किस रसायन के निकलने से होती है?
 - (अ) सीरोटोनिन
- (ब) मीरोटोनिन
- (स) टीरोटोनिन
- (द) लीरोटोनीन
- (अ)
- 18. अर्बुद को नष्ट करने में सहायक है-
 - (अ) Y- इन्टरफेरोन
- (ब) X- इन्टरफेरोन
- (स) Z- इन्टरफेरोन
- (द) B- इन्टरफेरोन
- (अ) **4. ঢল**ড

रिक्त स्थानों की पूर्ति कीजिए:-

- रोगाणुओं के शरीर में प्रविष्ट होने की क्रिया को कहते है।
- मलेरिया रोग द्वारा रोगी व्यक्ति से स्वस्थ व्यक्तियों
 में फैलता है और मनुष्य के लिए प्लाज्मोडियम की......
 अवस्था संक्रामक होती है।
- 3. हाथी पांव रोग के कारण होता है और इसका संक्रमण के द्वारा फैलता है।
- 4.को प्रतिरक्षा विज्ञान का जनक कहा जाता है।
- 5. सगर्भता के दौरान विकास करते भ्रूण को माँ के प्लेसैंटा से कुछ प्रतिरक्षी मिलते है यहप्रतिरक्षा का उदाहरण है।
- 6. पर्यावरण में उपस्थित कुछ प्रतिजनों के प्रति प्रतिरक्षा तंत्र की अतिरंजित अनुक्रिया.....कहलाती है।
- 7. प्राकृतिक कैनाबिनाइड्स पौधे केसे प्राप्त किए जाते है और शरीर केको प्रभावित करते है।
- हग्स / एल्कोहल की नियमित मात्रा अचानक बंद किए जाने पर उत्पन्न अभिलाक्षणिक और अप्रिय लक्षण कहलाते है।
- 9. हाथी पाँव रोग का रोगकारक कृमि है।
- 10. इन्टरफेरॉन होते है, जो द्वारा स्त्रावित होते हैं।
- उत्तर 1. संक्रमण, 2. मादा एनोफलीज, स्पोरोज्वाइट, 3. वाडचेरिया, एडीज / क्यूलेक्स मच्छर, 4. एडवर्ड जेनर, 5. निष्क्रिय, 6. एलर्जी, 7. पुष्पक्रम, हृदय परिसंचरण तंत्र, 8. विनिवर्तन संलक्षण, 9. फाइलेरियाई, 10. प्रोटीन, विषाणु संक्रमित कोशिकाओ

अतिलघुत्तरात्मक प्रश्न:-

- प्राथमिक और द्वितीय प्रतिरक्षा अनुक्रिया में भाग लेने वाले महत्वपूर्ण लसीकाणु है-
- उत्तर B और T लिम्फोसाइट

- 2. B और T लसीकाणु का विभेदीकरण कहाँ होता है?
- उत्तर B लसीकाणु का अस्थिमज्जा में।
 T- लसीकाणु का थाइमस ग्रंथि में
- 3. मानव में कौनसा इम्यूनोग्लोबिन सर्वाधिक मात्रा में पाया जाता है?
- उत्तर IgG (75%)
- 4. एलर्जी का एक उदाहरण दीजिए।
- उत्तर अस्थमा।
- 5. सांप के काटे जाने पर लगाया जाने वाला टीका किस प्रकार की प्रतिरक्षा का उदाहरण है-
- उत्तर निष्क्रिय प्रतिरक्षीकरण
- 6. पुनर्योगज DNA प्रौद्योगिकी द्वारा तैयार टीके का एक उदाहरण दीजिए।
- उत्तर यकृतशोथ बी (हिपेटाइटिस B) का टीका
- 7. ऐलर्जी किसे कहते है? एलर्जी के समय किस प्रकार की प्रतिरक्षा सर्वाधिक मात्रा में बनती है?
- उत्तर पर्यावरण में मौजूदा कुछ प्रतिजनों के प्रति प्रतिरक्षा तंत्र की अतिरंजित अनुक्रिया ऐलर्जी कहलाती है। वे कारक जो एलर्जी उत्पन्न करते है, एलर्जन कहलाते है। जैसे- परागकण, धूल आदि। इनके प्रति IgE प्रकार की प्रतिरक्षी बनती है।
- 8. एलर्जी के समय मास्ट कोशिकाओं से कौनसे रसायन निकलते है?
- उत्तर हिस्टैमिन और सीरोटोनिन
- 9. स्व-प्रतिरक्षा रोग किसे कहते है? उदाहरण दीजिए।
- उत्तर कभी-कभी आनुवंशिक और अज्ञात कारणों से शरीर अपनी ही कोशिकाओं पर हमला कर देता है। इसके फलस्वरूप शरीर को क्षिति पहुँचती है, यह स्व प्रतिरक्षा रोग कहलाता है। उदा. आमवाती संधिशोथ (रूमेटोयड आर्थ्राइटिस)
- 10. प्राथमिक व द्वितीय लसीकाभ अंगो के उदाहरण दीजिए।
- उत्तर प्राथमिक लसीकाभ अंग अस्थिमज्जा, थाइमस द्वितीय लसीकाभ अंग - लसीका ग्रंथियां, टांसिल्स, क्षुदांत्र के पेयर्स पेचेज
- 11. श्लेष्म संबद्ध लसीका ऊतक (MALT) किसे कहते है?
- उत्तर प्रमुख पथों (श्वसन, पाचन और जननमूत्र पथ) के आस्तरो (लाइनिंग)के भीतर स्थित लसिकाभ ऊतक MALT कहलाते है। यह मानव शरीर के लसीकाभ उत्तक का 50% है।
- 12. मैटास्टेसिस किसे कहते है?
- उत्तर दुर्दम अर्बुद रक्त परिसंचरण द्वारा शरीर के अन्य भागों में

पहुँचकर नये ट्यूमर बनाते है। इस गुण को मेटास्टेसिस कहते है।

13. विडाल परीक्षण व एलीजा परीक्षण कौनसे रोगों की पुष्टि के लिए किए जाते है?

उत्तर क्रमश: टायफाइड व एड्स रोग के लिए।

14. किस रोग से बचाव के लिए व्यक्ति को T.A.B. का टीका लगवाना चाहिए।

उत्तर टॉयफाइड रोग।

15. प्रतिजन- प्रतिरक्षी पारस्परिक क्रिया के सिद्धांत पर आधारित परीक्षण का नाम बताइए।

उत्तर ELISA- Test

16. वह प्रतिरक्षा क्या कहलाती है जिसमें शरीर की रक्षा के लिए बने बनाए प्रतिरक्षी सीधे ही शरीर को दिए जाते है।

उत्तर निष्क्रिय प्रतिरक्षा

 एण्ट अमीबा हिस्टोलिटिका नामक प्रोटोजोआ द्वारा उत्पन्न रोग का नाम बताइए।

उत्तर अमीबीय पेचिश

18. सुदम अर्बुद व दुर्दम अर्बुद में विभेद कीजिए।

उत्तर सुदम अर्बुद – ये सामान्य ट्यूमर होते है जो कम हानिकारक होते है। ये स्थानीय होते है एवं इनमें मेटास्टेसिस का गुण नहीं होता।

> दुर्दम अर्बुद – ये अत्यंत हानिकारक होते है। स्थानिक नहीं होते तथा मेटास्टेसिस का गुण पाया जाता है।

19. दाद के रोगजनक का नाम लिखिए-

उत्तर कवक माइक्रोस्पोरम, ट्राइकोफाइटोन तथा एपिडर्मोफाइटोन

20. सर्वाधिक घात (गंभीर) मलेरिया प्लाज्मोडियम की कौनसी जाति द्वारा उत्पन्न होता है?

उत्तर प्लैज्मोडियम फैल्सीफेरम

21. मानव में प्लाज्मोडियम की संक्रमणकारी अवस्था है?

उत्तर स्पोरोजोइट

दीर्घ उत्तरीय प्रश्न:-

 सहज प्रतिरक्षा किसे कहते है? सहज प्रतिरक्षा में कितने प्रकार के रोध होते है? नाम लिखिए।

उत्तर सहज प्रतिरक्षा- यह प्रतिरक्षा जन्मजात होती है अर्थात यह प्रतिरक्षा माता-पिता से संतान को प्राप्त होती है। इसमें चार प्रकार के रोध होते है:- 1. शारीरिक रोध – त्वचा व उपकला की श्लेष्मा रोगाणुओं को शरीर में प्रवेश से रोकती है।

2. कार्यिकीय रोध - आमाशय में HCl, मुँह में लार, आँखों के आंसू रोगाणुओं की वृद्धि रोकते है।

3. कोशिकीय रोध – रक्त में न्यूट्रोफिल, मानोसाइट, मारक लिम्फोसाइट तथा उत्तकों में वृहत भक्षकाणु (मेक्रोफेज)रोगाणुओं का भक्षण कर उन्हें नष्ट कर देते है।

4. साइटोकाइन रोध - विषाणु संक्रमित कोशिकाएं इन्टरफेरॉन नामक प्रोटीनों का स्त्रावण करती है जो असंक्रमित कोशिकाओं को भविष्य में विषाणु संक्रमण से बचाती है।

2. अमिबायोसिस रोग के रोगकारक जीव, लक्षण व फैलने के साधनों को नामांकित कीजिए।

उत्तर रोगकारक - एन्टामीबा हिस्टोलिटिका

लक्षण - पेटदर्द, दस्त के साथ रक्त का आना या श्लेष्मा का आना, हल्का पेचिश

वाहक - घरेलू मक्खी

स्त्रोत – संक्रमित व्यक्ति के मल से संदूषित पेयजल व खाद्य सामग्री।

 एड्स रोगजक का पूरा नाम लिखिए। इसका संक्रमण कैसे होता है? मानव शरीर में एड्स के लक्षणों को समझाइए।

उत्तर HIV - Human Immuno-deficiency virus HIV संक्रमण के तरीके

111 (())

1. संक्रमित व्यक्ति से यौन संपर्क द्वारा (82.5%)

संदुिषत रक्त और रक्त उत्पादो के आधान द्वारा संक्रमण
 (8%)

3. संदुषित सुईयों द्वारा (2%)

4. अन्य कारण - संक्रमित मां से शिशु में (7.5%)

रोग के लक्षण -

1. बार - बार सामान्य रोगो से ग्रसित होना।

2. शरीर के भार में कमी आना,

3. बार - बार बुखार आना व दस्त लगना

4. सिरदर्द व चक्कर आना।

5. रोग प्रतिरोधक क्षमता खत्म होना।

 कैंसर रोग का वर्णन निम्नांकित शीर्षको के अंतर्गत कीजिए।

- (i) कैंसर रोग के कारण लिखिए।
- (ii) कैंसर अभिज्ञान एवं निदान।
- (iii) सामान्य कोशिकाएँ कैंसर कोशिकाओं की तरह वृद्धि नहीं दर्शाती क्यों?
- उत्तर (i) कैंसर उत्पन्न करने वाले कारकों को कैंसरजन कहते है। इन्हें निम्नलिखित समूहों में बांटा जा सकता है –
 - भौतिक कारक आयनकारी विकिरण (एक्सिकरण व गामा किरण) अनायनकारी विकिरण (पराबैंगनी विकिरण)
 - 2. रासायनिक कारक तम्बाकु के धुंए में उपस्थित रासायनिक कैंसरजन
 - 3.जैविक कारक अर्बुदीय विषाणु (ओंकोजेनिक विषाणु)
 - (ii) कैंसर अभिज्ञान एवं निदान -
 - 1. जीवितपरीक्षा (Biopsy) जब शरीर के किसी भाग में कैंसर का संदेह होता है तो उस भाग से छोटा सा टुकड़ा लेकर उसका काट काटकर अभिरंजित कर जाँच की जाती है कि कैंसर है या नहीं।
 - 2. हिस्टोपेथोलॉजिकल (ऊतक विकृति) अध्ययन द्वारा कैंसर का पता लगाया जाता है। आंतरिक अंगो में कैंसर का पता लगाने के लिए रेडियोग्राफी, एक्स-किरणों द्वारा, कम्प्यूटेड टोमोग्राफी, मेगनेटिक रेजोर्नेस इमेजिंग (MRI) आदि तकनीकों का उपयोग किया जाता है।
 - 3. रक्त की जाँच अधिश्वेतरक्ता (ल्यूकेमिया) की जाँच के लिए रक्त के नमूने में रक्त कणिकाओं की गणना कर मालूम किया जाता है कि रक्त कैंसर (ल्यूकेमिया)है या नहीं।
 - 4. प्रतिरक्षियों का उपयोग कर कैंसर का पता लगाया जाता है।
 - 5. कुछ जीन विशेष प्रकार के कैंसरजनो के प्रति सुग्राही होत है अत: उन जीनों की पहचान कर उन व्यक्तियों को उस कैंसरजन से बचने की सलाह दी जाता है।
 - (iii) सामान्य कोशिकाओं में संस्पर्श संदमन (Contact inhition) का गुण होता है। इस गुण के कारण इन कोशिकाओं का अन्य कोशिकाओं से संस्पर्श इनकी अनियंत्रित वृद्धि को संदमित करता है। अत: सामान्य कोशिकाएं कैंसर कोशिकाओं की तरह (अनियंत्रित) वृद्धि नहीं दर्शाती।
- (अ) टिटेनस रोग के रोगकारक का नाम लिखिए। इस रोग का एक लक्षण व बचाव का उपाय लिखिए।
 - (ब) किशोरों में एल्कोहल व ड्रग के कुप्रभावों को रोकने के लिए कोई चार सुझाव दीजिए।
- उत्तर (अ) क्लोस्ट्रिडियम टिटेनी, शरीर की कंकालीय पेशीया

- संकुचित होने लगती है। बचाव के लिए एन्टी टिटेनस सीरम का टीका लगवाना चाहिए।
- (ब) एल्कोहल व ड्रग रोकथाम व नियंत्रण के लिए सुझाव
- अनावश्यक समकक्षी दबाव (पियर प्रेशर) से बचाव चाहिए।
- 2. विभिन्न समस्याओं का हल परामर्श लेकर करे।
- 3. माता-पिता, शिक्षक व मित्रों से उचित मार्गदर्शन व सलाह लेनी चाहिए।
- 4. नशे के कुप्रभाव की जानकारी देना।
- 5. व्यावसायिक और चिकित्सा सहायता द्वारा नशामुक्ति
- 6. व्यक्ति की क्षमताओं का उपयोग अध्ययन, खेलकूद व अन्य रचनात्मक कार्यों में किया जाना चाहिए।
- 5. (i) ओपिऑइड्स ड्रग क्या है?
 - (ii) स्मेक का रासायनिक नाम लिखिए।
 - (iii) स्मेक किस पादप से प्राप्त करते है?
 - (iv) मार्फीन की रासायनिक संरचना का चित्र बनाइए।
 - (i) ये ऐसे ड्रग है जो हमारे केन्द्रीय तंत्रिका तंत्र और जठरान्त्र पथ में उपस्थित विशिष्ट ऑपियाइड्स ग्राहियो से जुड़ जाते है।
 - (ii) डाइएसिटिल मॉर्फीन

- 7. टाइफॉइड रोग का निम्नांकित शीर्षको के अंतर्गत वर्णन कीजिए।
 - (i) रोगजनक का नाम
 - (ii) रोग की पुष्टि हेतु परीक्षण का नाम
 - (iii) संक्रमण का तरीका

(iv) रोग के चार प्रमुख लक्षण

उत्तर

- (i) सल्मोनेला टाइफी
- (ii) विडाल परीक्षण
- (iii) संदूषित भोजन व पानी के सेवन से रोगकारक छोटी आंत से होते हुए रक्त द्वारा शरीर के विभिन्न भागों तक पहुँच जाता है।
- (iv) रोग के लक्षण:-
- 1. लगातर तेज बुखार (39°-40°C)
- 2. पेट दर्द, भूख न लगना, कब्ज
- 3. सिर दर्द व कमजोरी
- 4. गंभीर अवस्था में आंतो में छेद बन जाते है।
- 8. निम्नलिखित में अंतर लिखिए -
 - (a) तरल प्रतिरक्षा व कोशिका माध्यित प्रतिरक्षा
 - (b) सहज प्रतिरक्षा व अर्जित प्रतिरक्षा
 - (c) प्रतिजन व प्रतिरक्षी
- उत्तर (a)

तरल प्रतिरक्षा	कोशिका माध्यित प्रतिरक्षा
1. यह B- लिम्फोसाइट	1. यह T- लिम्फोसाइट द्वारा
द्वारा उत्पन्न होती है।	उत्पन्न होती है।
2. इसमें B-लसीकाणु	2. इसमें T-लसीकाणु सक्रिय
प्रतिरक्षी बनाकर प्रतिजनों	एवं विभाजित होकर प्रतिजनों
को नष्ट करते है	को नष्ट करते है।
3. यह रक्त व लसीका में	3. यह कोशिका में प्रवेश करके
प्रतिजनों को नष्ट करती है।	प्रतिजनों को नष्ट करती है।

b.

सहज प्रतिरक्षा	अजिर्त प्रतिरक्षा
1. यह जन्मजात होती है	1. यह जन्म के पश्चात जीवन
अर्थात् जन्म के साथ ही	काल में प्राप्त होती है।
प्राप्त हो जाती है।	
2.यह वंशानुगत होती है।	2. यह वंशानुगत नहीं होती
	है ।
3. यह संक्रमण या टीके	3. यह संक्रमण या टीके से
से प्राप्त नहीं होती	प्राप्त होती है।

c

प्रतिजन	प्रतिरक्षी
1. ये बाहर से शरीर में	1. ये शरीर में उत्पन्न होते है
प्रवेश करते है।	

2. ये रोग उत्पन्न करते है।	2. ये रोगो से रक्षा करते है।
3. ये प्रतिरक्षियों के निर्माण	3. ये प्रतिजनों की नष्ट
को प्रेरित करते है।	करते है।

- (i) फाइलेरिया उत्पन्न करने वाले कृमि की किन्ही दो जातियों के वैज्ञानिक नाम लिखिए।
 - (ii) वे किस प्रकार संक्रमित व्यक्ति के शरीर को प्रभावित करती है?
 - (iii) यह बीमारी किस प्रकार फैलती है?
- उत्तर (i) वुचेरिया बैंक्रोफ्टाई, वुचेरिया मैलाई

9.

उत्तर

- (ii) इस रोग में पैरों की लसीका वाहिनियाँ प्रभावित होती है। इनमें सूजन होने से मनुष्य के पैर हाथी के पैर की तरह मोटे हो जाते है,अत: इस रोग को हाथी पांव रोग कहा जाता है। इस रोग में वृषण व स्तन विरूपताएँ एवं सूजन उत्पन्न हो जाती है।
- 10. मलेरिया परजीवी के जीवन चक्र को नामांकित चित्र की सहायता से समझाइए।

अथवा

''अपने जीवन की निरंतरता बनाए रखने के लिए प्लाज्मोडियम प्रोटोजोआ को मच्छर तथा मानव दोनों परपोषियो की आवश्यकता होती है।'' व्याख्या कीजिए।

जीवन चक्र:- प्लाज्मोडियम की स्पोरोज्वाइट अवस्था संक्रामक होती है। जब मादा एनाफेलीज मच्छर किसी स्वस्थ व्यक्ति को काटती है तो उसकी लार के साथ ये स्पोरोज्वाँइट मनुष्य के रक्त में छोड़ दिए जाते है। रक्त से होते हुए ये स्पोरोज्वॉइट यकृत में पहुँचकर यकृत कोशिकाओं में प्रवेश कर जाते है। जहाँ ये अलैंगिक जनन द्वारा संख्या में वृद्धि करते है। संक्रमित यकृत कोशिकाओं के टूटने पर ये परजीवी रक्त में आ जाते है तथा RBC में प्रवेश कर जाते है। संक्रमित RBC रक्त में मुक्त होते है। हीमोजोइन कणों के रक्त में मुक्त होने पर व्यक्ति को ठण्ड लगती है। कंपकपी आती है और बुखार हो जाती है। रक्त में मुक्त हुए परजीवी पुन: RBC को संक्रमित करते है तथा यह क्रम चलता रहता है। मनुष्य में ही नर व मादा युग्मक जनको का निर्माण होता है। जब मादा एनोफ्लीज मच्छर संक्रमित व्यक्ति को कटती है तो रक्त के साथ युग्मकजनक भी मच्छर के शरीर में पहुँच जाते है। मच्छर में परजीवी का लैंगिक जनन पूरा होता है तथा स्पोराज्वाइंट अवस्था बनती है जो मुनष्य के लिए संक्रामक होती है। इस प्रकार प्लाज्मोडियम दो परपोषियो में अपनी जीवन चक्र पूर्ण करता है। इसका प्राथमिक परपोषी मादा एनोफ्लीज जबकि द्वितीयक परपोषी मनुष्य होता है।

मानव कल्याण में सूक्ष्मजीव

अंकभार = 5, वस्तुनिष्ठ - 1 (½ अंक) रिक्त स्थान - 1(½ अंक) अतिलघुउत्तरात्मक- 1(1 अंक), लघुउत्तरात्मक -2 (प्रत्येक 1½ अंक)

वस्तुनि	ष्ठ प्रश्न:-				(ब) मेथेनोजन्स - गौब	र गैस	
1.	धान के खेती में एजोल	ा के साथ साहचर्य बना	ाने वाला		(स) यीस्ट - एथेनॉल		
	नाइट्रोजन योगीकरण ज	ीवाणु कौनसा है-			(द) स्यूडोमाईसीटीज-ए	्निटबायोटिक -	(अ)
	(अ) स्पाइरूलीना	(ब) एनाबीना		9.	सीवेज में कार्बनिक पद	ार्थ का सूक्ष्मजीवो द्वारा	अपघटन
	(स) फ्रेन्किया	(द) टोली पेथिक्स	(ब)		होता है-		
2.	सायनोबैक्टीरिया का प्र	योग जैव उर्वरक के रूप	में खेतों		(अ) प्राथमिक उपचार मे	में (ब) द्वितीयक उपचार	: में
	में किया जाता है-				(स) तृतीय उपचार में	(द) उपर्युक्त सभी में	(ৰ)
	(अ) गेहूँ	(ब) मक्का		10.	किस जीवाणु पर कार्य व		निसिलीन
	(स) धान	(द) गन्ना	(स)		की खोज का अवसर मि	ाला-	
3.	वैज्ञानिक जिन्हे ''पैनीस	गीलिन'' की खोज तथ	ा इसकी		(अ) स्ट्रेप्टोकोकस	(ब) एश्चीरिया कोला	ई
	एंटीबायोटटिक के रूप	में पुष्टि करने पर नोबेल	पुरस्कार		(स) स्टेफिलोकोकस	(द) राइजोबियम	(स)
	मिला -			11.	उपचारित सीवेज की BG	OD बिना उपचार किए ग	ाये सीवेज
	(अ) एलैग्जेन्डर फ्लेमिंग	। (ब) अरनैस्ट चैन			की अपेक्षा -		
	(स) हावर्ड फ्लोरे	(द) उपर्युक्त सभी	(द)		(अ) कम होगी	•	
4.	गोबर गैस संयंत्र में काम	आने वाला जीवाणु है-			(स) समान होगी	(द) कहा नहीं जा सब	ऋता(अ)
	(अ) नाइट्रीकारी जीवाणु	(ब) मीथेनोजन		12.	भारत में गौवंश के गोबर		तकनीक
	(स) अमोनीकारी जीवाए	Ţ			प्रमुखतः किसके प्रयासं		
	(द) विनाइट्रीकारी जीवा	णु	(অ)		(अ) गैस अथॉरिटी ऑप	•	
5.	गोबर गैस (बायोगैस)	में सर्वाधिक मात्रा किस	की होती		(ब) तेल एवं प्राकृतिक	गैस आयोग	
	है?				(स) भारतीय कृषि अनुर	तंधान संस्थान	
	(अ) ब्युटेन	(ब) मीथेन			(द) इण्डियन ऑयल क	ॉरपोरेशन	(स)
	(स) प्रोपेन	(द) CO ₂	(অ)	रिक्त स	थानों की पूर्ति कीजिए:-		
6.	'जीवन के खिलाफ'कि	ससे संबंधित है-		1.	पैनीसीलिन नाम एंटीबार	ग्रोटिक कव	क से प्राप्त
	(अ) प्रतिजैविक	(ब) जीवाणु			होती है।		
	(स) कवक	(द) शैवाल	(अ)	2.	इथेनॉल के औद्योगिक र		•••••
7.	निम्न में से कौनसा युग्म	जैव उर्वरक का है?			का प्रयोग किया जाता	है।	
	(अ) एजोला तथा BGA			3.	स्विस पनीर में पाए जार		
	(ब) नास्टॉक तथा लेग्यूम	-			नामक बैक्टीरिया द्वारा	बड़ी मात्रा में CO ₂ मु	क्त किए
	(स) राजोबियम तथा घा	स			जाने के कारण होते है।		~_
	(द) साल्मोनेला तथा ई.व	मोलाई	(अ)	4.	सिद्रिक एसिड का		क एासड
8.	निम्नलिखित में से कौन	पा एक जोड़ा गलत है -		_	का से उ		. `
	(अ) कोलियोफार्मस – र्वि	•		5.	बैक्यूलोवायरस कीटों । सम्बन्धे है सह		कार इन्ह
					मार देते है, यह	का उदाहरण ह ।	

6. एजेक्टोबेक्टर एकजीवाणु है जो वायुमंडलीय नाइट्रोजन का योगिकीकरण कर मृदा में N_2 की मात्रा बढ़ा देता है।

- 7. बायोगैस के उत्पादन में प्रयोग किए जाने वाले सूक्ष्म जीवों को कहते हैं।
- उत्तर 1. पैनीसीलियम नोटेटम, 2. सेकेरोमाइसिस सेरीविसी, 3. प्रोपियोनिबैक्टीरियम- शारमेनाई, 4. एस्परजिलस नाइपर, एसिटोबैक्टर एसिटाई, 5. जैवनियंत्रण, 6. स्वतंत्रजीवी नाइट्रोजन स्थिरीकारक मृदा, 7. मीथेनोजन

अतिलघुत्तरात्मक प्रश्न:-

- 1. उर्णक किसे कहते है?
- उत्तर जीवाणुओं व कवक तंतुओं द्वारा बने जालीनुमा झुण्ड या समूह को उर्णक कहते है।
- एफिडो व मच्छरो को नियंत्रित करने वाले कीटों के नाम लिखिए।
- उत्तर भृंग (बीटल)एफिड्स को तथा व्याध पतंग (ड्रेगन फ्लाई)मच्छरों को नियंत्रित करते है।
- बायोगैस में पायी जाने वाली प्रमुख गैंसो के नाम लिखिए।
- उत्तर मीथेन (50-70%), कार्बन डाई ऑक्साइड (25-35%) व हाइड्रोजन (1-5%)
- 4. पनीर तथा योगर्ट किस प्रक्रिया के उत्पाद है?

उत्तर किण्वन

5. लैक्टिक एिसड जीवाणु (LAB) द्वारा उचित ताप पर दूध को दही में बदल देने के फलस्वरूप उसकी पोषक गुणवत्ता में निम्न में से कौनसा विटामिन बढ जाता है -

उत्तर विटामिन \mathbf{B}_{12}

लघुत्तरात्मक प्रश्नः-

- (i) दूध को दही में पिरवर्तित करने वाले बैक्टीरिया का नाम लिखिये।
 - (ii) दूध को दही में बदलने वाले जीवाणु की दो लाभदायक भूमिका बताइए।
- उत्तर (i) लेक्टोबेसीलस लैक्टिस तथा अन्य LAB(Lactic Acid Bacteria)
 - (ii) Vit.B₁₂ की मात्रा बढ़ाना
 - (iii) सूक्ष्म जीवों द्वारा हमारे पेट में होने वाले रोगों को रोकना।
- प्रतिजैविक (एंटीबायोटिक) को परिभाषित कीजिए।
 पैनीसीलिन किस कवक से प्राप्त किया जाता है?
- उत्तर ऐसे रासायनिक पदार्थ जो सूक्ष्मजीवो से प्राप्त होते है तथा अन्य सूक्ष्मजीवो (रोगकारको)की वृद्धि को मंद कर देते है

या उन्हें नष्ट कर देते है, प्रतिजैविक कहलाते है। पैनीसीलिन नामक प्रतिजैविक को पेनीसीलियम नोटेटस नामक मोल्ड कवक से प्राप्त किया जाता है।

- स्विस चीज (पनीर) में बड़े-बड़े छिद्र किस कारण होते
 है? स्पष्ट कीजिए।
- उत्तर स्विस चीज में पाए जाने वाले बड़े-बड़े छिद्र प्रोपिओनिबैक्टीरियम शारमैनाई नामक जीवाणु द्वारा बड़ी मात्रा में उत्पन्न CO, के कारण होते है।
- 4. किण्वक से आपका क्या अभिप्राय है? ऐसीटिक अम्ल के उत्पादन में किस जीवाणु का उपयोग होता है?
- उत्तर औद्योगिक स्तर पर सूक्ष्मजीवो की क्रिया (किण्वन) द्वारा उत्पादों को प्राप्त करने के लिए बड़े-बड़े बर्तनों की आवश्यकता होती है, जिन्हें किण्वक कहते है। ऐसिटिक अम्ल को ऐसीटोबेक्टर एसिटाई (जीवाणु)द्वारा उत्पादित किया जाता है।
- 5. बी.ओ.डी. का पूरा नाम लिखिये। किसी जलाशय की BOD से आपका क्या अभिप्राय है?
- उत्तर BOD-Biochemical Oxygen Demand (बायोकेमिकल ऑक्सीजन डिमांड), O_2 की वह मात्रा जो एक लीटर जल में उपस्थित कार्बनिक पदार्थों को पूर्ण रूप से विघटित करने के लिए सूक्ष्मजीवों को आवश्यक होती है, उसे BOD कहते हैं।
- 6. आनुवांशिक अभियांत्रिकी द्वारा रूपान्तरित जीवाणु उत्पाद का नाम लिखिए, जिसका उपयोग हृदयघात के अग्रमायोकार्डियल संक्रमण से गुजरे रोगी की रक्त वाहिकाओं से थक्का हटाने (थक्का स्फोटन) में किया जाता है।
- उत्तर स्ट्रैप्टोकाइनेज (स्ट्रेप्टोकोकस जीवाणु द्वारा उत्पन्न)
- 7. (अ) जैव वैज्ञानिक नियंत्रण के तहत कौनसी कवक का उपयोग पादप रोगो के उपचार में किया जाता है।
 - (ब) बाजार में खरीदा गया बोतल वाला फलों का रस घर पर बने रस की तुलना में अधिक साफ क्यों दिखायी पड़ता ह?
- उत्तर (अ) ट्राइकोडर्मा
 - (ब) पैक्टिनेजिज व प्रोटीएजेज के प्रयोग के कारण
- 8. सबसे पहले प्रतिजैविक का नाम व इसके खोजकर्ता का नाम लिखिए।
- उत्तर पहला प्रतिजैविक पैनीसीलिन है, इसकी खोज अलेक्जैंडर फ्लमिंग ने की थी।
- 9. बैकर यीस्ट व ब्रीवर्स यीस्ट किसे कहते है?

शेखावाटी मिशन-100

सत्र: 2023-24

उत्तर सैकेरोमाइसीज सैरीवीसी को।

10. किण्वित पेय उत्पादन में सूक्ष्मजीवों के उपयोग को उदाहरण सहित समझाइए।

उत्तर बीवर्स यीस्ट यानि सैकेरोमाइसीज सैरीविसी यीस्ट का प्रयोग करते हुए माल्टीकृत धान्यों व फलो के रस से किण्वन क्रिया द्वारा एल्कोहलीय पेय पदार्थ बनाये जाते है। आसवन विधि द्वारा ब्राण्डी, विस्की तथा रम बनायी जाती है व बिना आसवन द्वारा वाइन तथा बीयर बनायी जाती है।

11. लैग्यूमिनस पादप की जड़ो पर स्थित ग्रंथियों को नष्ट कर दिया जाये तो पादप पर क्या प्रभाव पड़ेगा? सकारण समझा।इए।

उत्तर लैग्यूमिनस पादप की जड़ो पर स्थित ग्रंन्थियाँ नष्ट कर दी जाये तो पादप की पोषक पदार्थों की कमी हो जाएगी क्योंकि इन ग्रंथियों में राइजोबियम नामक सहजीवी जीवाणु वायुमण्डलीय नाइट्रोजन को स्थिरीकृत कर कार्बनिक रूप (पोषक) में परिवर्धीत कर देते है जिन्हे पादप पोषकों के रूप में ग्रहण करते है।

12. जलाक्रांत खेत में नॉस्टॉक एवं एनाबीना जैसे शैवालों की आबादी अधिक हो जाने से खेत किस प्रकार प्रभावित होगा? सकारण समझाइए।

उत्तर जलाक्रांत खेत में नॉस्टॉक एवं एनाबीना जैसे शैवालों की आबादी अधिक हो जाने से मृदा की उर्वरता में वृद्धि होगी क्योंकि ये शैवाल वायुमण्डल की मुक्त नाइट्रोजन को स्थरीकृत करते है। इससे मृदा पोषकों की भरपाई हो जाती है तथा रासायनिक उर्वरको पर निर्भरता भी कम हो जाती है।

13. एक पादप की कवक मूल से कवक को हटा दिया जाय तो पादप की कौनसी क्रियाएँ प्रभिवत होगी? कारण सिहत समझाइए।

उत्तर 1. पादप को मृदा से फास्फोरस नहीं मिल पायेगा क्योंकि कवक ही पादप को मृदा से फास्फोरस अवशोषित करके उपलब्ध करता है।

> 2. पादप में मूलवातोढ़ रोगजनको के प्रति प्रतिरोधकता, लवणता व सूखे के प्रति सहनशीलता तथा वृद्धि व विकास में कमी आ आती है क्योंकि कवकमूल इन सभी क्रियाओं को सम्पादित करने में पादप की सहायता करता है।

14. कीटों व संधिपादों (आर्थोपोड्स) को नियंत्रित करने के लिए कौनसा विषाणु उपयुक्त है तथा यह किस वंश के अन्तर्गत आता है?

उत्तर विषाणु - बैक्यूलोवायरेसिस वंश - न्युक्लिओपॉलीहाइड्रोसिस वायरस

15. वायुमण्डलीय नाइट्रोजन को स्थिरीकृत करने वाले दो मुक्त जीवाणुओं के नाम लिखिए।

उत्तर 1. एजोस्पाइरिलम 2. एजेक्टोबेक्टर

16. उन सायनोजीवाणुओं का नाम लिखिए जिन्हें जैवउर्वरक के रूप में काम में लिया जाता है?

उत्तर नॉस्टॉक, ऐनाबीना, ऑसिलेटोरिया।

17. यदि वाहित मल से सूक्ष्मजीवों का निष्कासन कर दिया जाये तो इसके उपचार पर क्या प्रभाव पड़ेगा? स्पष्ट कीजिये।

उत्तर यदि वाहित मल से सूक्ष्म जीवों का निष्कासन कर दिया जाये तो वाहित मल का द्वितीयक उपचार नहीं हो पायेगा अर्थात् कार्बनिक पदार्थों का उपघटन नहीं हो पायेगा। द्वितीयक उपचार के दौरान वायवीय एवं अवायवीय सूक्ष्म जीवों द्वारा वाहितमल का उपचार किया जाता है क्योंकि इससे अच्छी प्रौद्योगिकी मानव के पास अब तक नहीं है अत: सूक्ष्मजीवों के बिना वाहित मल का उपचार संभव नहीं है।

18. जैव वैज्ञानिक नियंत्रण के तहत किन्ही दो जीवों के उपयोग लिखए।

उत्तर (i) ड्रेगनफ्लाई- मच्छरो से छुटकारा दिलवाने हेतु उपयोगी। (ii) बीटल - यह एफिडो से छुटकारा दिलवाने में उपयोगी है।

19. बायोगैस का उत्पादन करते समय किण्वन सम्बन्धी कौन-कौनसी परिस्थितियाँ बनाए रखना आवश्यक है? केवल तीन लिखिए।

उत्तर 1. किण्वन पूर्णत: अवायवीय पर्यावरण में कराया जाना चाहिए और किसी भी तरह मुक्त ऑक्सीजन मौजुद नहीं होनी चाहिए।
2. फरमेंटर (किण्वक) के भीतर pH 6.8 से 7.6 तक लगभग उदासीन स्तर पर बनाए रखना चाहिए।

3. किण्वन में मीथेनोजन बैक्टीरिया उपस्थित होना चाहिए।

20. जैव उर्वरक किस प्रकार मृदा की उर्वरता को बढ़ाते है?

उत्तर जैव उर्वरक एक प्रकार के जीव है, जो मृदा की पोषक गुणवत्ता को बढ़ाते है। जैवउर्वरकों के मुख्य स्त्रोत जीवाणु, कवक तथा सायनोबैक्टीरिया होते है। दूसरे जीवाणु एजोस्पाइरिलम तथा एजोबैक्टर भी वायुमण्लीय नाइट्रोजन को स्थिर कर देते है। धान के खेत में सायनोबैक्टीरिया महत्वपूर्ण जैव-उर्वरक की भूमिका निभाते है। नील हरित शैवाल भी मृदा में कार्बनिक पदार्थ बढ़ा देते है, जिससे उसकी उर्वरता बढ़ जाती है।

21. निम्न जैवसक्रिय अणुओं के प्राप्ति स्त्रोत व उपयोग लिखिए-

(1) 'साइक्लोस्पोरिन - ए'(2) स्टैटिन

उत्तर (1) 'साइक्लोस्पोरिन-ए' - ट्राइकोडर्मा पॉलोस्पोरम कवक से प्राप्त अंग प्रत्यारोपण में प्रतिरक्षा निरोधक (इम्यूनोसप्रेसिव)के रूप में उपयोगी (2) स्टैटिन- मोनॉस्कस परप्यूरीयस यीस्ट से उत्पन्न, रक्त कॉलेस्ट्रॉल को कम करने वाले कारक के रूप में उपयोगी।

22. बायोगैस का उत्पादन कैसे होता है। बायोगैस संयत्र का एक नामांकित आरेख चित्र बनाइए।

उत्तर मीथेनोबैक्टिरियम नामक मीथैनोजन जीवाणु जब सेल्यूलोजिय पदार्थो का अवायवीय अपघटन करते है तो मीथेन (CH_4) , कार्बन डाई आक्साइड (CO_2) , व हाइड्रोजन (H_2) गैस बनती है। इसमें मीथेन की मात्रा सबसे अधिक होती है। इस प्रकार बनी इन गैसों के समूह की ही बायोगैस कहते है।

बायोगैस संयत्र में एक 10-15 फीट गहरा टैंक होता है। इस टैंक में कर्दम (स्लरी)भरी जाती है एवं ऊपर एक गैस होल्डर से संलग्न सचल ढ़क्कन रखा जाता है। जब इस संयत्र में गैस बनती है तो ढ़क्कन ऊपर उठता है व गैस होल्डर में गैस भरती जाती है। गैस होल्डर से लगे पाइप द्वारा इस गैस का वितरण पाइपों द्वारा आस-पास के क्षेत्रों में किया जाता है जहाँ इसे ईंधन व रोशनी के लिए काम में लिया जाता है। काम में आने के बाद कर्दम का उपयोग उर्वरक के रूप में किया जाता है।

चित्र 10.8 संयंत्र का एक प्रारूप बायोगैस

ॐॐॐॐ अध्याय **9**

जैव प्रौद्योगिकी सिद्धांत एवं प्रक्रम

अंक भार-4, वस्तुनिष्ठ -1 ($\frac{1}{2}$ अंक), रिक्त स्थान-1 ($\frac{1}{2}$ अंक), लघुउत्तरात्मक - 2 (प्रत्येक $1\frac{1}{2}$ अंक)

—— वस्तुनि	ष्ठ प्रश्न:-				(अ) हेलिकेज	(ब) रेस्ट्रीक्शन एण्डोन्	— — यूक्लिऐज
1.		न्धित (रेस्ट्रीक्शन) एन्जा	इम है।		(स) लाइगेज	(द) पॉलीमरेज	(অ)
	(अ) Eco-RI	(অ) Hind II		10.	सर्वप्रथम स्टेनले कोहे	इन व हरबर्ट बोयर (19) 72) ने
	(स) पालीमरेज DNA	(द) लाइगेज	(অ)		•	ार्माण में प्रतिजैविक प्रतिर	
2.	पहला पुनर्योगज DNA	बनाया -			•,	मूल प्लाज्मिड के साथ	जोड़ने में
	(अ) फ्लोरे एवं चेन				सफलता प्राप्त की है-		0 0
	(स) कोहेन व बोयर	(द) फ्लेमिंग	(स)			(ब) सालमोनेला टाइप	-
3.	एक रासायनिक अभिद्रि	क्रया में प्रतिबन्ध एन्डोन्यूि	क्लऐज		(स) कोलेरा	(द) स्ट्रेप्टोकोकस	(অ)
	*	इको किस अभिक्रिया द्वार	•	11.	-	DNA तकनीक के साधन	है−
	किया जा सकता है।				(अ) प्रतिबंध एजाइम		
	(अ) अपकेन्द्रीकरण	(ब) जैल इलेक्ट्रोफोरेसि	ग स		(स) वाहक	(द) सभी	(द)
	(स) PCR	(द) DNA फिंगर प्रिटिं	टंग (ब)	12.	•	ोधे ही <u>जन्तू कोशिका</u> के वे	क्रन्द्रक में
4.		हिक में प्रतिजैविक प्रतिरोध	धी जीन		प्रवेश (अन्तः क्षेपित)		
	उपस्थित है-				(अ) जीनगन		(-)
	(अ) amp ^R	(অ) tet ^R			-	(द) इलेक्ट्रोफोरेसिस	(स) ∵ ->
	(स) A एवं B दोनों	, ,	(स)	13.	•	ने या टंगस्टन के सूक्ष्म व च वेग से प्रवेश करवाने ी	
5.	निम्न में सही सुमेलित है-				राद्य काशिका म उठ है-	व पग स प्रपश करपाग ।	फ ।पाप
	~	इम(ब) कवक-काइटिनेज			् (अ) जीन गन / बायोर्ा	लस्टिक	
	(स) पादप-सेल्यूलेज		(द)		(অ) PCR		
6.	बायोरिक्टर में आवश्यव	फ्र है−				(द) PCR	(अ)
	(अ) ताप नियंत्रक	, , L		14.	_	कृतिक रूप से पाए जाते :	
	(स) वातन	(द) सभी	(द)		(अ) युकेरियोटिक कोर्	•	
7.		में DNA को अवक्षेपित व	फरने के		(ब) जीवाणु		
	लिए मिलाया जाता है-				(स) यीस्ट	(द) सभी	(অ)
	(अ) इरिथिडियम ब्रोमाः	इंड		15.	जीन में हेर-फेर से तात		()
	(ब) एगरोस जैल				(अ) आनुवांशिक पदाथ		
	(स) ठण्डा एथेनॉल	(द) क्रिस्टल कण	(स)		(ब) आनुवांशिक पदार्थ	*	
8.	•	किनारो से न्युक्लियोटाइः	डस को		(स) आनुवांशिक पदाथ		
	हटाता है वह है-	(-) - <u>}</u>			(द) सभी		(द)
	(अ) एण्डोन्यूक्लिऐज	(ब) एक्सोन्यूक्लिएंज	(-)	16.		ाषी कोशिका तक पहुँचाने व	
_		(द) DNA पॉलिमरेज	(অ) . —,	10.	है-		
9.	आनुवााशक आभयाात्र के नाम से जानते है-	की में ' <u>आण्विक कैची ⁄</u>	<u>चाकू</u> '		(अ) वाहक	(ब) परपोषी	

10.	(अ) प्लाज्मिड (ब) C-DNA		है (काइटिनेज)
	(अ) प्लाज्मिड (ब) C-DNA (स) संश्लेषित DNA (द) सभी (अ)	12.	उत्पादो की अधिक मात्रा में उत्पादन हेतु की
19.	जीवाणु कोशिका में गुणसूत्रीय DNA के अतिरिक्त पाया		आवश्यकता होती है (बायोरियक्टर)
17.	जाने वाला अतिरिक्त वर्तुल DNA है।	13.	यदि कोई प्रोटीन कूटलेखन (इनकोडिंग) जीन किसी
	(अ) एपीसोम्स (ब) कोस्मिड		विषम जात (हेटेरोलोगस) परपोषी में अभिव्यक्त होता है तो इसेकहते है। (पुनर्योगज प्रोटीन)
	(स) प्लाज्मिड (द) फेस्मिड (स)	11	-
20.	जन्तु कोशिकाओं में रिट्रो वायरस सामान्य कोशिकाओं	14.	PCR का अर्थ है (पॉलीमरेज चेन रिएक्शन)
	को किन कोशिकाओं में परिवर्तन करता है।	15.	एग्रोबेक्टोरियम टयुमीफेशिएंस कई द्विबीजपत्री पौधो का
	(अ) पूर्णशक्त कोशिका (ब) कैंसर कोशिका		रोग जनक पैथोजन है वह DNA के एक खण्ड जिसे T- DNA कहते है को स्थानान्तरित कर सामान्य कोशिकाओं
	(स) मास्ट कोशिका (द) प्रतिजन कोशिका (ब)		कोमें रूपान्तरित करता है (अर्बूद⁄ट्यूमर)
रिक्त स	थान -	लघत्तर	ात्मक प्रश्न
1.	प्रतिजैविक प्रतिरोधी जीन की संवाहक (वेक्टर) के साथ जोड़ने का कार्य एंजाइम द्वारा होता है।(DNA	1.	प्लाज्मिड क्या है। दो प्रतिबंधित एण्डोन्यूलिऐज एंजाइमों के नाम लिखिए
	लाइगेज)	उत्तर	प्लाज्मिड:- जीवाणु कोशिका में गुणसूत्रीय DNA के
2.	DNA खण्ड आवेशित अणु होते है। (ऋणावेशित)		अतिरिक्त द्विकुण्डलनी संरचना वाला अतिरिक्त DNA प्लाज्मिड कहलाता है।
3.	ऐगरोससे निकाला गया एक प्राकृतिक बहुलक		– प्लाज्मिड वाहक की तरह कार्य करता है।
	है।(समुद्रीघास) ग्रेसीलेरिया		– प्रतिबंधित एण्डोन्युक्लिएेज Eco RI एवं Hind II
4.	DNA खण्डों कोद्वारा उनके आकार के अनुसार	2.	पैलिन्ड्रोम क्या है? जैव प्रौद्योगिकी में एग्रोबेक्टेरियम
	अलग करते है (छलनी प्रभाव / छालन / इलूसन)		ट्युमिफेसियस जीवाणु से प्राप्त Ti- प्लाज्मिड का महत्व
5.	जैल इलेक्ट्रोफोरेसिस क्रिया में इथीडियम ब्रोमाइड से		लिखिए-
	अभिरंजित जैल को पराबैंगनी प्रकाश से आवृत करने पर DNA की रंग की पट्टी दिखाई देती है।(हल्का	उत्तर	पेलिन्ड्रोम - DNA में स्थित N ₂ - क्षारकों का वह विशिष्ट
	चमकीला नारंगी)		अनुक्रम जहाँ प्रतिबंधित एन्जाइम क्रिया कर DNA को काट देते है। प्राप्त DNA अनुक्रम को बाएं एवं दाए भाग से पढ़ने
6.	के द्वारा नॉन ट्रॉस फार्मेट के ट्रॉस फार्मेट से		पर Nू क्षारक अनुक्रम एक समान प्राप्त होते है उसे पेलिन्ड्रोम
	अलग किया जाता है।(वरण योग्य)		कहते [ँ] है।
7.	अधिकांश द्विबीजपत्री पादपों में जीन क्लोनिंग हेतु वेक्टर		Ti - प्लाज्मिड का महत्व - इसका प्रयोग पादप कोशिका में
	के रूप मेंका एवं जन्तु कोशिकाओं के लिए		वांछित जीन के प्रवेश हेतु करते है जिससे वाँछित गुणो युक्त
	का उपयोग होता है।(Ti plasmid, रिट्रो वायरस)		पादप तैयार किया जा सकते है उदा. बीटी कपास
8.	बाजार में भेजने से पहले अभिव्यक्त प्रोटीन के पृथक्करण	3.	''संवाहक व स्त्रोत DNA को एक ही प्रतिबंधन एन्जाइम द्वारा काटने पर ही पुनर्योगज DNA अणु का निर्माण संभव
	और शुद्धिकरण की प्रक्रिया को कहते है। (अनुप्रवाह संसाधन)		है'' कारण समझाइए
	(- 13% and 11 m - 11)	उत्तर	एक ही प्रतिबंधन एन्जाइम द्वारा काटने पर प्राप्त होने वाले
	4	.9	

शेखावाटी मिशन-100

17.

18.

(स) एंजाइम

स्थान पर काटता है-

(अ) GACCTG

(स) GAATTC

वाहक DNA है-

(द) परजीवी

(অ) AAATTC

(द) GGGCCA

सीमाकारी एंजाइम Eco RI DNA को निम्न में से किस

(अ)

(स)

9.

10.

11.

है।(प्रोब)

है।(थर्मस एक्वाटीकस)

सत्र : 2023-24

न्यूक्लिक अम्ल का एकल रज्जू जिसके साथ एक

रेडियोधर्मी अणु जोड़ दिया गया है तो वह कहलाता

टेक पॉलीमरेज जीवाणु को पृथक किया गया

..... कवक कोशिकाओं को तोड़ने का कार्य करता

DNA खण्डों में समान प्रकार के ''चिपचिपे सिरे'' होते है। जो DNA लाइगेज की सहायता से एक किनारे से दुसरा किनारा आपस में जुड़ जाते है जो एक ही प्रतिबंधन एंजाइम के काटने पर संभव है।

4. GEAC एवं RFLP का पूरा नाम लिखए-

उत्तर GEAC:- जेनेटिक इंजिनियरिंग एप्रुवल कमेटी RFLP:- रेस्ट्रिकसन फ्रेग्मेट लेन्थ पॉलीमॉर्फिज्म

5. वाहक से क्या तात्पर्य है? उत्तम वाहक के गुणधर्म लिखिए-

उत्तर वाहक:- ऐसे DNA खण्ड जिनके साथ वांछित DNA खण्ड को जोड़कर परपोषी कोशिकाओं में पहुँचाया जाता है, वाहक कहलाता है।

उत्तम वाहक के गुणधर्म -

- 1. वाहक में कम से कम एक अभिज्ञान स्थल होना चाहिए
- 2. वाहक में 'ori जीन' उपस्थित होनी चाहिए।
- 3. क्लोनिंग स्थल एवं रिपोर्टर जीन की उपस्थिति होनी चाहिए।

6. पुनर्योगज DNA किसे कहते है? जीवों के आनुवांशिक रूपांतर के दो मूलभूत चरण लिखिए?

उत्तर पुनर्योगज DNA :- दो विजातीय स्त्रोतो से प्राप्त DNA को आपस में DNA लाइगेज एंजाइम से जोड़कर तैयार किया गया नया DNA ही पुनर्योगज DNA कहलाता है। उदा.

> वांछित जीन (क्राईजीन)+ प्लाज्मिड (Ti प्लाज्मिड) लाइनेज एंजाइम पुनर्योगज DNA आनुवांशिक रूपांतरण के चरण –

- (i) वांछित जीन युक्त DNA की पहचान करना
- (ii) चिह्नित DNA का परपोषी में स्थानान्तरण

7. प्रतिबंधन एंजाइमों के नामकरण को समझाइए।

उत्तर प्रतिबंधन एंजाइम के नाम का पहला केपिटल अक्षर उस प्रोकेरियोटिक कोशिका के वंश के नाम का पहला अक्षर होता है जिससे कि उसे प्राप्त किया गया है।

- इसी प्रकार दूसरा एवं तीसरा अक्षर जाति से लिया जाता है जैसे Eco RI एंजाइम इश्चिरिया कोलाई से (Escherichia coli) से प्राप्त किया है अत: E अक्षर वंश से एवं Co अक्षर जाति से लेकर Eco शब्द बना।
- यह R प्रभेद (स्ट्रेन) का प्रतिनिधित्व करता है एवं I रोमन नम्बर से है। इस प्रकार E=Escheriachia, Co=coli, R-प्रभेद एवं I– रोमन संख्या है। इस प्रकार Eco RI नामकरण हुआ।

8. आनुवांशिक अभियांत्रिकी किसे कहते है? PCR क्रिया द्वारा लाभकारी जीन का प्रवर्धन क्रिया के चरणों को लिखिए।

उत्तर आनुवांशिक अभियांत्रिकी- किसी जीव (Ex. सुक्ष्मजीव, जन्तु, पादप) के जीनोम में उपस्थित जीनो में फेर बदल कर वांछित फीनोटाइप प्राप्त करना ही आनुवांशिक अभियांत्रिकी कहलाती है।

> PCR (पॉलीमरेज चेन रिएक्सन):- खोज- केरी मुलिस इस तकनीक की सहायता से कुछ वांछित DNA खण्ड की लाखों प्रतियां तैयार की जाती है।

PCR क्रिया निम्न 3 चरणों में सम्पन्न होती है।

- (i) विकृतिकरण ds. DNA को उच्चताप पर रखकर Hband तोड़कर ss-DNA में परिवर्तित किया जाता है।
- (ii) एनेलिंग (प्राइमर का जुड़ना)- इस चरण में दोनों DNA टेम्पलेट रज्जूको पर 5'→ 3'दिशा में 5-8 न्यूक्लियोटाइड लम्बा प्राइमर जोड़ा जाता है।
- (iii) बहुलीकरण इसमें टेकपॉलीमरेज एन्जाइम पहले से उपस्थित सभी न्यूक्लियोटाइड का उपयोग करते हुए नई टेम्पलेट रज्जुक का निर्माण करते है।

9. जैव प्रोद्योगिकी किसे कहते है? पुनर्योगज DNA प्रोद्योगिकी के चरणों को लिखते हुए इस क्रिया का प्रदर्शन आरेखी चित्र द्वारा निरूपित कीजिए।

उत्तर जैव प्रोद्योगिकी: जीव विज्ञान की शाखा जिसमें विभिन्न तकनिको की सहायता से सुक्ष्मजीवो, जन्तुओं एवं पादपों से मानव उपयोगी उत्पाद प्राप्त करते है उसे जैव प्रोद्यौगिकी कहते है।

- पुनर्योगज DNA प्रौद्योगिकी के चरण :-
- (i) वांछित जीन की पहचान एवं पृथक्करण
- (ii) पुनर्योगज DNA का निर्माण
- (iii) पुनर्योगज DNA का उपयुक्त परपोषी कोशिका में स्थानान्तरण
- (iv) रूपान्तरित परपोषी कोशिकाओं का पृथक्करण एवं संवर्धन
- (v) वांछित जीन की अभिव्यक्ति तथा वांछित उत्पाद प्राप्त करना।

पुनर्योगज DNA निर्माण क्रिया का आरेखी चित्र -स्त्रोत कोशिका का चयन

एंजाइमों की सहायता से कोशिका के बाह्य

आवरण का पाचन

आवरण रहित कोशिका

DNA विगलन

रेस्ट्रीक्सन एण्डोन्यूक्लिऐज से उपचारित

्र जैल इलेक्ट्रोफोरेसिस

क्षालन तकनीक द्वारा वांछित जीन का पृथक्करण

10. PBR-322 क्या है?

उत्तर P^{BR}-322 यह एक प्लाज्मिड है जिसका उपयोग आण्विक क्लोनिंग में किया जाता है।

> - आनुवांशिक अभियांत्रिकी में यह सवांहक के रूप में लिया जाता है।

11. बायोरिएक्टर (फर्मेन्टर) क्या है इसके जैव प्रौद्योगिकी में उपयोग लिखिए-

उत्तर बायोरिएक्टर – एक बड़े पात्र के समान संरचना वाले जिसमें सुक्ष्मजीवों, पादपो, जन्तुओं की कोशिकाओं की सहायता से कच्चे पदार्थ को जैविक रूप से विशिष्ट उत्पादों एन्जाइमों etc में परिवर्तित किया जाता है, उन्हें बायो रिएक्टर कहते है।

> - इनका उपयोग अधिक मात्रा में जैविक उत्पाद प्राप्त करना है।

12. निम्न के केवल नामांकित चित्र बनाइए-

उत्तर (i) PBR - 322 (ii) जैल इलेक्ट्रोफोरोसिस

(iii) Eco RI क्रिया द्वारा पुनर्योगज DNA निर्माण

(i) PBR - 322

(ii) जैल इलेक्ट्रोफोरोसिस

(iii) प्रतिबंधन एंजाइम - इको आर वन (Eco RI) की क्रिया द्वारा पुनर्योगज डीएनए के निर्माण के चरण

51

अध्याय

जैव प्रौद्योगिकी एवं उसके उपयोग

अंक भार = 4, वस्तुनिष्ठ - 1 ($\frac{1}{2}$ अंक), रिक्त स्थान- 1 ($\frac{1}{2}$ अंक), लघुत्तरात्मक - 2 (प्रत्येक $1\frac{1}{2}$ अंक)

वस्तुनिष	त्रस्तुनिष्ठ प्रश्नः-			9.	प्रथम Bt फसल / पादप है		
1.	क्राई प्रोटीन कौनसे कीट	ो को मारने का कार्य कर	ती है-		(अ) कपास	(ब) तंम्बाकू	
	(अ) कोलियोप्टेरॉन (भ्रंग	1)			(स) गेहूं	(द) चावल	(ब)
	(ब) डीप्टेरॉन (मच्छर)			10.	सुनहरे चावल (गोल	डनराइस) एक आनु	वांशिक
	(स) लीथीडोप्टेरॉन				रूपान्तिरित फसल पादप		किसके
	(द) सभी		(द)		जैविक संश्लेषण के लिए	ए है-	
2.	जैव प्रौद्योगिकी द्वारा निरि	र्मेत प्रथम हार्मोन है-			(अ) Vitamin - C	(অ) Vitamin - B	
	(अ) ह्युम्युलिन	(ब) हिरूडीन			(퍿) Vitamin - A		(स)
	(स) ऑक्सिन	(द) रिलेक्सिन	(अ)	11.	जीव का उसके जैवप्रैं	ोद्योगिकी में उपयोग	के लिए
3.	किसी बच्चे में या भ्रूण में	चिह्नित किए गये जीन दो	षो का		असुमेलित है-	0.2.0	
	सुधार किस विधि द्वारा वि	क्रया जाता है-			(अ) बैसीलस थुरिजिएनि		
	(अ) प्रोटोप्लास्ट संलयन	(ब) जीन चिकित्सा			(ब) थर्मस एक्वेटिकस -	-	
	(स) सुक्ष्म प्रवर्धन	(द) बायोप्सी	(অ)		(स) एग्रोबैक्टीरियम टयु		
4.	प्रॉक-इन्सुलिन में कौन-र	सी पेप्टाइड होती है-			(द) साल्मोनेला टाइफी ग	म्युरियम - प्रथम rDNA	-
	(अ) पॉलीपेप्टाइड श्रृंखला - A (ब) पॉलीपेप्टाइड श्रृंखला - B				निर्माण	·	(অ)
				12.	ट्रांसजैनिक पौधे विकसि	•	
	(स) पॉलीपेप्टाइड श्रृंखल	т – С			(अ) जीन स्थानान्तारण ह	ग्नरा	
	(द) सभी		(द)		(ब) रूपान्तरण द्वारा		, ,
5.	प्रथम ट्रांसजैनिक गाय''ः	रोजी'' के दूध में कौनसा	प्रोटीन		(स) मूकूलन		(अ)
	होता है जो बच्चों के लिए	ए पोषक युक्त है-		13.	बच्चों में ADA की कमी	िका उपचार किसके प्रत	यारोपण
	(अ) एल्फा-ऐन्टीट्रिप्सिन	(ब) एल्फा लेक्टएम्बुमिन	7		से होता है-	(-)	
	(स) ग्लाइकोप्रोटीन	(द) हिरूडिन	(অ)		(अ) वृक्क (—) ———	(ब) यकृत	(-)
6.	मानव प्रोटीन एल्फा - 1	एन्टीट्रिप्सिन का उपयोग	किस		(स) फुफ्फुस	(द) अस्थिमज्जा	
	रोग के उपचार में किया	जाता है-		14.	किसी कोशिका से सम्पृ क्षमता कहलाती है-	्ण नए पाधा क उत्पन्न	हान का
	(अ) कैंसर	(ब) ल्युकेमिया			•	(-1) 211-1	
	(स) एम्फिसीमा	(द) एनिमिया	(स)		(अ) पूर्णशक्तता (स) क्लोनिंग	(ब) अपबीजाणुता (त) कर्जेक्ट	(27)
7.	RNA अन्तरक्षेप में कौन	सी क्रिया रोकी जाती है-		4-		(द) कर्तोतक	(अ)
	(अ) रेप्लीकेशन	(ब) ट्रांस क्रिप्सन		15.	एलीलिली कंपनी ने DN कर इन्सुलिन श्रृंखलाओं	=	
	(स) ट्रांसलेसन	(द) सभी	(स)		में किस बंध द्वारा संयोजि		ા આવત
8.	जीव विष (Biotoxic)	जिस जीन द्वारा कूट	बद्ध		(अ) डाईपेप्टाइड बंध		•
	(कोडित) होता है उसे व	न्हते है-			(स) हाइड्रोजन बंध		(ब)
	(अ) क्राई जीन	(ब) ऑकोजीन				• •	, ,
	(स) लिंकेज जीन	(द) प्रमोटर जीन	(अ)				

रिक्त स्थान :-

- 1. बीटी एक जीविवष है जो जीवाणु से प्राप्त होता है।(बैसीलस थूरीनजिएन्सिस)
- 2. Cryl AB को नियन्त्रित करती है। (मक्का छेदक)
- 3. CryIAC व Cry2AB कपास के को नियन्त्रित करती है।(मुकुल कृमि)
- RNA अंतरक्षेप सभी जीवो में कोशिकीय सुरक्षा की एक विधि है।(युकेरियोटिक / ससीम केन्द्रकों)
- 5. पुनर्योगज DNA तकनीक द्वारा उत्पादित पहला मानव हार्मोनहै।(इन्सुलिन/ह्युमुलिन)
- तम्बाकु के पौधे के भाग मिलेइडोगाइनी इन्कोग्नीसिया सूत्रकृमि द्वारा संक्रमित होता है। (जड़/ Root)
- जीन चिकित्सा का सर्वप्रथम प्रयोग सन् 1990 में एक चार वर्षीय बालिका मेंकी कमी को दूर करने के लिए किया गया है।(ADA/एडिनोसीन डिएमीनेज)
- सन् 1977 में एक अमेरिकी कम्पनी नेपर अमेरिकन पेटेन्ट व ट्रेडमार्क कार्यालय द्वारा पेटेन्ट अधिकार प्राप्त कर लिया था। (बासमती धान)
- 1977 में सर्वप्रथम पारजीनी गायमानव प्रोटीन (एल्फा लेक्टोऐल्बूमिन) सम्पन्न दुग्ध प्राप्त हुआ।(रोजी)
- 10. एलाइसा (Elisa) सिद्धान्त पर कार्य करता है।(एण्टीजन एण्टीबॉडी अन्तक्रिया)

लघुत्तरात्मक प्रश्नः-

- प्र. 1. पारजीनी जन्तु (ट्रांसजैनिक जन्तु) किसे कहते हैं? ट्रांसजैनिक जन्तुओं से प्राप्त जैविक उत्पादों के महत्व को लिखिए।
- उत्तर- पारजीनी जन्तु: ऐसे जन्तु जिनके DNA में बाहरी DNA या जीन को प्रविष्ठ करवाया गया हो जो जीव में अपने लक्षण भी प्रकट करते है उन्हें पारजीनी जन्तु कहते है। ट्रांसजैनिक जन्तुओं से विशेष जैविक उत्पाद प्राप्त होते है जो विभिन्न क्रियाओं के लिए उपयोगी होते है जो निम्न प्रकार
 - (1) एल्फा-1 एंटीट्रिप्सिन पराजीनी भेड़ से प्राप्त प्रोटीन है जो मानव फेफड़े का इंफीसीमा रोग के उपचार में उपयोगी है।
 - (2) एल्फा-लेक्ट एल्बुमिन प्रथम आंनुवाशिक रूपान्तरित गाय 'रोजी' के दुध में उपस्थित प्रोटीन है जो बच्चों को

कृपोषण से बचाती है।

- प्र. 2. बायोपाइरेसी क्या है? चिकित्सा क्षेत्र में जैव प्रौद्योगिकी के उपयोग के महत्व को समझाइए?
- उत्तर- बायोपाइरेसी किसी देश के उत्पाद या स्रोतों का अन्य देश के द्वारा बिना अनुमित एवं सूचना के उनके उत्पाद या स्रोतों को उपयोग में लेना बायो पाइरेसी कहते है।

चिकित्सा क्षेत्र में जैव प्रौद्योगिकी का उपयोग -

- (1) मधुमेह रोग से ग्रसित व्यक्तियों हेतु मानव इन्सुलिन (ह्युमुलिन) का उत्पादन।
- (2) आंनुवाशिक रोगों के उपचार हेतु जीन चिकित्सा।
- (3) विभिन्न रोगों के निदान हेतु प्रयुक्त की जाने वाली मोनोक्लोनल एन्टीबॉडी का उत्पादन।
- (4) उन्नत टीको का विकास।
- प्र. 3. आनुवांशिक रूपान्तरित जीव (GMO) किसे कहते है? जी.एम. पौधों का उपयोग हमारे लिए किस प्रकार लाभप्रद है?
- उत्तर- आनुवांशिक रूपान्तरित जीव (GMO) ऐसे जीव जिनके DNA या जीनोम में किसी विजातिय स्रोत से प्राप्त DNA या जीन को प्रवेश करवाकर प्राप्त करते है उन्हें आनुवांशिक रूपान्तरित जीव कहते है।

उदाहरण: GM गाय, GM भेड़

- GM पौधों का उपयोग बीटी फसली पादपों के उपयोग से पीड़कनाशियों का उपयोग व उनसे होने वाले दुष्प्रभाव कम किया गया है।
- GM आलू (सुपर पोटेटो) जिसमें प्रोटीन संश्लेषण से सम्बन्धित जीन का समावेश करवाकर इसकी पोषकता में वृद्धि की गई। सुपर पोटेटो में प्रोटीन की अधिकता होती है।
- GM चावल (गोल्डन राइस) जिसके जीनोम में β-केरोटीन के संश्लेषण से संबंधित जीन प्रवेश करवाई जाती है। इसके उपयोग से विटामिन-A की पूर्ति कर रतौंधी रोग से बचा जा सकती है।
- GM टमाटर (फ्लेवर सावर) अधिक समय तक सुरिक्षत रखा जा सकता है। क्योंिक जीनोम परिवर्तन द्वारा इसकी भिति को मोटा कर दिया जाता है।
- प्र. 4. जीन चिकित्सा क्या है? एग्रोबेक्टीरियम को पादपों का प्राकृतिक एवं आनुवांशिक इंजीनियर कहते है, क्यों?
- उत्तर- जीन चिकित्सा किसी बच्चे या भ्रूण में चिन्हित किए गए जीन दोषों का सुधार करने की विधि जीन चिकित्सा कहते है। - एग्रोबेक्टीरियम जीवाणुओं में प्राकृतिक रूप से यह क्षमता

शेखावाटी मिशन-100

सत्र : 2023-24

पाई जाती है कि वे अपने प्लाज्मिड के T-DNA को पादप कोशिका के जीनोम में स्थानान्तरित कर सकते है।

प्र. 5. एकस्व (पेटेन्ट) किसे कहते है Bt- कॉटन के बारे में आप क्या जानते है?

उत्तर- एकस्व पेटेन्ट - किसी नए उत्पाद को बनाने बेचने के लिए विशेषाधिकार प्राप्त करने हेतु उस उत्पाद/खोज का पंजीकरण करना ही पेटेन्ट कहलाता है। भारत में पेटेन्ट कराने के बाद 5 वर्षों तक मान्य रहता है।

Bt कॉटन- यह आनुवांशिक रूपान्तरित कपास है। बेसीलस थूरीनजिएन्सिस के जीनोम से cry जीन को Ti- प्लाज्मिड की सहायता से कपास की कोशिका में स्थानान्तरित किया गया है। यह कीट प्रतिरोधी किस्म है क्योंकि cry जीन द्वारा निर्मित Bt Toxin कीटो के लिए प्राणघातक है अत: Bt कॉटन को किलर कॉटन भी कहते है। चिकित्सा क्षेत्र में जैव प्रौद्योगिकी का एक उपयोग है।

प्र. 6. टमाटर का छिलका इतना मोटा होता है कि दीवार पर जोर से मारने पर भी नहीं फटता। इस टमाटर का क्या नाम है? इस व्यवहार का क्या कारण है ? स्पष्ट कीजिए।

उत्तर- टमाटर का नाम - 'फ्लेवर सावर' इसकी फलभित्ति का मोटा होने का कारण कोशिका भिति से अपघटित करने वाले एन्जाइम पॉलीग्लेक्टुरोनेज की मात्रा का कम होना है।

प्र. 7. मधुमेह रोगियों को यदि असंसाधित प्राक् इंसूलीन दिया जाए तो क्या प्रभाव पड़ेगा?

उत्तर- प्राक् इंसुलिन निष्क्रिय अवस्था में होता है अत: मधुमेह रोगियों को यदि असंसाधित प्रॉक् इन्सुलिन दे दिया जाए तो रोगियों को वांछित लाभ नहीं हो पाएगा।

प्र. 8. जीन चिकित्सा क्या है? इस क्रिया का उपयोग बताइए?

उत्तर- जीन चिकित्सा: आंनुवाशिक अभियांत्रिकी की सहायता से जीव में उपस्थित निष्क्रिय जीन को हटाकर उसके स्थान पर सिक्रय जीन को स्थापित करना ही जीन चिकित्सा कहलाती है।

> इसका उपयोग सर्वप्रथम 1990 में चार वर्षीय बालिका में एडीनोसीन डीएमिनेज न्युनता रोग के उपचार में किया गया है।

9. एली लिली कम्पनी द्वारा मानव इन्सुलिन का संश्लेषण किस प्रकार किया गया है? इन्सुलिन किस रोग के उपचार के लिए उपयोगी है?

अथवा

इन्सुलिन निर्माण या जैव प्रौद्योगिकी का चिकित्सा में उपयोग को समझाइए-

उत्तर 1983 में एलि लिली कम्पनी ने DNA के दो अनुक्रम तैयार किए जो कि इन्सुलिन की श्रृंखला A व B को कूटलेखन करती है।

- DNA के इन अनुक्रमों को E. coli जीवाणु की प्लाज्मिड में प्रवेश करवाकर पॉलीपेप्टाइड श्रृंखला A व B प्राप्त की
- इन दोनों श्रृंखलाओं को डाई सल्फाइड बन्धो से जोड़कर इन्सुलिन का निर्माण किया।
- कम्पनी ने पूनर्योगज DNA तकनीक को प्रयुक्त कर मानव इन्सुलिन तैयार किया था।

10. GEAC शब्द का विस्तार लिखिए। GEAC क्यों स्थापित की गई? इस संगठन के द्वारा निभाये जाने वाली जिम्मेदारियो का उल्लेख कीजिए -

उत्तर GEAC - जेनेटिक इंजिनियरिंग अप्रुवल कमेटी

- GEAC स्थापित करने का कारण -
- (i) GMO के पारिस्थितिक तंत्र में प्रविष्ट होने पर अप्रत्याशित परिणाम निकल सकते है अत: इसका नियमन करना आवश्यक है।
- (ii) मानव क्रियाकलाप अन्य जीवों के लिए हानिकारक न हो इसके लिए कुछ जैविक मापदण्ड अपनाया जाना आवश्यक है।

- GEAC के उत्तरदायित्व -

- (i) आनुवांशिक अभियांत्रिकी से संबंधित अनुसंधान की वैधानिकता का निर्णय करना।
- (ii) GMO का सार्वजनिक सेवा के रूप में सुरक्षित उपयोग सुनिश्चित करना।

11. बीटी द्वारा उत्पन्न Bt- जीन विष (Toxin) से बेसिलस तो नहीं मरता है, जबकि कीट मर जाते है, क्यों?

बेसिलस थुरेजिऐन्सिस जीवाणु के जीनोम में उपस्थित 'क्राईजीन' द्वारा बीटी टॉक्सिन संश्लेषित किया जाता है जो जीवाणु कोशिका (बेसिलस)में प्रोटॉक्सिन (Protoxin) के रूप में रहता है अत: बेसिलस नहीं मरता है जबिक कीट शरीर की मध्यांत्र (Midgut) में क्षारीय माध्यम के कारण यह सिक्रिय Bt-Toxin में बदल जाता है जो कीट की मृत्यु का कारण बनता है क्योंकि इनके क्रिस्टल मध्यांत्र की एपिथिलियम कोशिकाओं में छिद्र कर देते है तथा अंत में वे कोशिकाए फटकर नष्ट हो जाती है।

00000

उत्तर

अध्याय

जीव और समष्टियाँ

अंकभार - 4, वस्तुनिष्ठ - 2 (प्रत्येक ½ अंक), दीर्घउत्तरीय - 1 (3 अंक)

वस्तुनिष्ठ प्रश्न

- जहाँ पशु चरते है, उसके पास ही बगुले भोजन प्राप्ति के 1. लिए रहते है। इस पारस्परिक क्रिया को क्या कहते है।
 - (अ) सहोपकारिता
- (ब) सहभोजिता
- (स) परजीविता
- (द) परभक्षण
- (ब)
- चरघांताकी वृद्धि के अन्तर्गत जब ग्राफ बनाया जाता है 2. तो वह किस प्रकार का बनता है?
 - (अ) S- आकार का
- (ब) J- आकार का
- (स) L- आकार का
- (द) M- आकार का (ब)
- एक जीव वैज्ञानिक ने बगीचे में चुहो की समष्टि का 3. अध्ययन किया। उसने पाया की औसत जन्मदर 250 है, औसम मृत्यु पद 240 है, अप्रवास दर 20 एवं उत्प्रवास दर 30 है। समष्टि की कमी / वृद्धि (शुद्ध) कितनी है।
 - (अ) 10
- (ब) 15
- (积) 05
- (द) शुन्य
- (द)
- ऑफ्रिस नामक भुमध्य सागरीय मेडिटेरिनियम आर्किड 4. की एक जाति परागण कराने के लिए किसका सहारा लेती है-
 - (अ) लैंगिक कपाट
- (ब) अलैंगिक कपाट
- (स) कायिक कपाट
- (द) सुक्ष्म कपाट
- (अ)

12.

- एस्केरिस मनुष्य की आंत में रहता है, किस प्रकार के संबंध 5.
 - (अ) सहोपकारिता
- (ब) सहभोजिता
- (स) अन्तः परजीविता
- (द) बाह्य परजीविता
- माइकोराइजा उच्च पादपों की जड़ो में संबंध है-6.
 - (अ) परजीविता
- (ब) सहोपकारिता
- (स) सहभोजिता
- (द) सभी
- (ब)

(स)

- समष्टि घनत्व बढ़ता है-7.
 - (अ) तीव्र मृत्यु दर
- (ब) उत्प्रवास
- (स) देशान्तरवास
- (द) None
- (स)
- निम्न में से असंगत / असत्य है-8.
 - $(37) dN/dt = \frac{rN(K-N)}{K}$

- (a) dN/dt = rN
- $(orall) Nt + I = N_1 + [(B+I)-(D+E)]$
- (द) सभी सत्य है

(द)

- समष्टि का दूसरा विशिष्ट गुण है-9.
 - (अ) लिंग अनुपात
- (छ) जन्म
- (स) मृत्यु
- (द) नर एवं मादा

(अ)

- एक समान जातियों के जीवो का समुह जो किसी दिए गये 10. समय में किसी विशिष्ट भौगोलिक क्षेत्र में साथ-साथ निवास करना कहलाता है।
 - (अ) लिंगानुपात
- (ब) जन्मदर
- (स) मृत्युदर
- (द) समष्टि
- (द)

- निम्न में से सत्य है-11.
 - (i) प्रत्येक समृह के जीवों का अनुपात उस समष्टि की आयु संरचना कहलाती है।
 - (ii) समष्टि के लिए आयु वितरण आलेखित किया जाता है तो बनने वाली संरचना आयु पिरेमिड कहलाता है।
 - (iii) आयु पिरेमिड प्रायः नर एवं मादा का आयु वितरण संयुक्त आरेख को दर्शाता है।
 - (अ) (i) एवं (ii)
- (ब) (ii) एवं (iii)
- (स) (i) एवं (ii)
- (द) (i),(ii) एवं (iii)
- (द)
- खाली स्थानों पर प्रायः आकड़ा / मदार (Calotropis) की खरपतवार उगी रहती है उसे कोई पशु नहीं खाता है इसमें एक विषैला पदार्थ होता है।
 - (अ) निकोटिन
- (ब) ग्लाइकोसाइड
- (स) क्वीनीन
- (द) न्युक्लियोसाइड

(ब)

- ऐसी जैविक क्रिया जिसमें एक को लाभ जबकी दुसरी 13. जाति को लाभ व हानि नहीं होती है-
 - (अ) सहोपकारिता
- (ब) परभक्षण
- (स) सहभोजिता
- (द) स्पर्धा
- (स)

- स्पर्धा में होता है-14.
 - (अ) एक को लाभ, दूसरे को हानि
 - (ब) एक को लाभ, दूसरे को भी लाभ / दोनों को लाभ
 - (स) एक को लाभ, दूसरे को न लाभ व न हानि

- (द) एक को हानि, दूसरे को भी हानि / दोनों को हानि (द)
- 15. समष्टि साइज का मापन किस विधि से अधिक उपयुक्त है
 - (अ) प्रतिशत आवरण
- (ब) जीवभार (बायोमास)
- (स) A एवं B दोनों
- (द) दोनों नहीं
- (स)

2.

उत्तर

दीर्घ उत्तरात्मक प्रश्न:-

 किसी आवास में समिष्ट घनत्व के घटने-बढ़ने के चार मूलभूत प्रक्रमों को स्पष्ट कीजिए?

अथवा

समष्टि (Population) की कोई चार विशेषताएँ बताइए?

उत्तर समिष्ट :- एक निश्चित समय में एक विशिष्ट भौगोलिक क्षेत्र में एक विशेष जाति के सदस्यों की कुल संख्या समिष्ट कहलाती है।

> किसी भी समष्टि की एक विशेष पहचान, संघटन एवं संरचना होती है जो निम्न लक्षणों द्वारा प्रदर्शित होती है-

- (i) समष्टि का आकार एवं समष्टि घनत्व (ii) जन्मदर (iii) मृत्युदर (iv) लिंगानुपात
- (i) समष्टि घनत्व (Population density) एक निश्चित समय पर इकाई क्षेत्रफल में उपस्थित विशेष जाति के सदस्यों की कुल संख्या समष्टि घनत्व कहते है। इसे निम्न प्रकार से दर्शाते हैं-

$$D = \frac{N}{S}$$
 $D = समष्टि घनत्व$

N = जाति विशेष के जीवों की कुल संख्या <math>S =इकाई क्षेत्रफल

- (ii) जन्मदर (Birth rate) इकाई समय में उत्पन्न होने वाले विशेष जाति के सदस्यों (संतित) की संख्या जन्मदर कहलाती है।
- जन्मदर अधिक होने पर समष्टि घनत्व में वृद्धि होती है।
- किसी जनसंख्या (समिष्ट)में जाति के सदस्यों के आप्रवासन (Immigration) से भी समिष्ट घनत्व में वृद्धि होती है।
- (iii) मृत्युदर (Death rate) इकाई समय में मृत्यु को प्राप्त होने वाले सदस्यों की संख्या मृत्यु दर कहलाती है।
- मृत्युदर से समिष्ट घनत्व के आकार में कमी होती है।
- किसी समिष्ट में जाति के सदस्यों का उत्प्रवास (Emigration) होने पर भी समिष्ट घनत्व में कमी आती है।
- (iv) लिंगानुपात (Sex ratio) विशेष भौगोलिक क्षेत्र में विशेष जाति के नर व मादा का अनुपात लिंगानुपात कहलाता है।

परभक्षण एवं परजीविता में अन्तर स्पष्ट कीजिए?

परभक्षण व परजीविता दोनों समष्टि में पाई जाने वाली ऋणात्मक अन्योन्य क्रियाएँ है–

- (i) परभक्षण :- इसके अंतर्गत एक जीव भोजन हेतु दूसरे जीव का मारकर भक्षण करता है।
- जहाँ भक्षण करने वाले जीव को परभक्षी (Predator) तथा भक्षित होने वाला जीव भक्षक (prey) कहलाता है।

Example	परभक्षी	शिकार
	बिल्ली	चूहा
	<u> </u> बाघ	हिरण
	छिपकली	कीट

(ii) परजीविता - इस प्रकार के सहबंधन में एक जीव दूसरे जीव से पोषण प्राप्त करता है तथा बदले में उसे नुकसान पहुचाता है।

यह आश्रित जीव को परजीवी (Parasite) तथा आश्रय देने वाले को पोषी (Host) जीव कहते है।

Example	पोषी	परजीवी
	मानव	विब्रियो जीवाणु
	पशु	जोंक
	पादप	अमरबेल

Note - परजीवी बाह्य अथवा आन्तरिक दोनों हो सकते है। बाह्य परजीवी - जो पोषी जीव की बाह्य सतह पर पाये जाते है।

Ex. जोक (परजीवी) का पशुओं (पोषी)पर पाया जाना आंतरिक परजीवी - जो पोषी जीव के शरीर के भीतरी वातावरण में पाए जाते है। टीनिया सोलियम (परजीवी) का मानव (पोषी) की आंत्र में

- 3. निम्न पर संक्षित टिप्पणी लिखिए -
 - (i) गॉसे का नियम (ii) सहोपकारिता (iii) अण्ड परजीविता
 - (i)गॉसे का नियम गॉसे के अनुसार दो अलग-अलग जातियाँ जिनकी मूलभूत आवश्यकता समान होती है वे एक ही प्रकार के आवास में साथ-साथ नहीं रह सकती है। इनमें होने वाली प्रतिस्पर्धा के कारण एक ही जाति को इस प्रवास से हटा दिया जाता है। इसे स्पर्धी अपवर्जन का नियम कहते है।
 - (ii) सहोपकारिता ऐसी अर्न्तक्रिया जिसमें दोनों जीवों को लाभ होता है सहोपकारिता (Mulualism) कहलाता है। Example:- लाइकेन (शैवाल व कवक) इस प्रकार का अर्न्तसंबंध दर्शाते है जो कि दोनों के लिए अनिवार्य है।

उत्तर

लाइकेन में कवल तंतु मृदा में जल व आवश्यक खनिज पोषक तत्त्व अवशोषित कर शैवाल को उपलब्ध करता है जो प्रकाश संश्लेषण द्वारा निर्मित कार्बोहाइड्रेट का कुछ भाग कवक को प्रदान करता है।

(iii) अण्ड परजीविता – इस प्रकार की परजीविता में परजीवी, परपोषी के आश्रय में अण्डे देता है जो परपोषी के अण्डे के समान होते है। परिणामस्वरूप परपोषी उन अण्डो को अपना समझकर उनका सेचन करता है। इस प्रकार परजीवी के अण्डो से बच्चे उत्पन्न हो जाते है।

Example - कोयल (परजीवी) एवं कौआ (पोषी)

4. मेडिटेरेनियम आर्किड पुष्प की एक पंखुडी का रंग, आकार तथा चिह्नों का मादा मक्षिका से मिलता जुलता होने का क्या कारण है? समझाइए?

उत्तर मेडिटेरिनियम आर्किड पुष्प की एक पंखुड़ी का आकार, रंग तथा चिह्नों का मादा मिक्षका से मिलता जुलता होने से नर मिक्षका पुष्प को मादा मिक्षका समझकर पुष्प के साथ कूट मैथुन करता है इस कारण पुष्प के परागकण मिक्षका से चिपक जाते हैं। नर मिक्षका द्वारा यही क्रिया अब अन्य पुष्प पर करता है तो परागण क्रिया हो जाती है।

5. परजीवी एक परभक्षी में कोई चार अन्तर लिखिए -

उत्तर परजीवी परभक्षी

परजीवी अपने पोषक से परभक्षी अपने पोषक से प्राय: बड़ा
 छोटा होता है।

 परजीवी अपने जीवित परभक्षी शिकार को वही की वही पोषक से लगातार पोषण मारकर खा जाता है।
 प्राप्त करता है।

 परजीवी प्राय: पोषक परभक्षी प्राय: पोषक विशिष्ट नहीं विशिष्ट होते है। होते है।

4. बड़े ही शक्ति से छोटा छोटे की जान लेकर बड़ा लाभान्वित परजीवी लाभ लेता है वहोता है जो शिकार को बाहर से इसे अन्दर से कमजोर से खाना प्रारम्भ करता है। बनाता है।

6. वृद्धि मॉडल क्या है समिष्ट वृद्धि ग्राफ का निरूपित करते हुए समझाइए?

उत्तर समिष्ट में प्रारम्भ से लेकर स्थायी होने तक दर्शायी जाने वाली वृद्धि के गणितीय स्वरूप को आरेखित करने पर वक्र प्राप्त होता है, उसे समिष्ट वृद्धि वक्र या वृद्धि मॉडल कहते है। समिष्ट वृद्धि मॉडल के दो प्रारूप होते हैं –

(i) चरघांताकी वृद्धि (Exponential Growth) (ii) संभार

तंत्र वृद्धि (logistic growth)

(i) चरघांताकी वृद्धि - चरघांताकी वृद्धि अथवा ज्यामितीय वृद्धि समान होती है, जब संसाधन असीमित होते है। यदि N साइज की समष्टि में जन्म दर b के रूप में और मृत्यु

दर d के रूप में हो तब इकाई समय अविध $t\left(\frac{dN}{dt}\right)$ के दौरान वृद्धि या कमी निम्न प्रकार होगी।

$$\dfrac{dN}{dt} = \left(b - d\right) \times N$$
 ,यदि $\left(b - d\right) = r$ हो तब $\dfrac{dN}{dt} = rN$

यहा r - प्राकृतिक वृद्धि की इंट्रिसिक दर कहलाती है।
- चरघांताकी वृद्धि समीकरण के समाकलित रूप को निम्न प्रकार से प्रदर्शित कर सकते है

 $N_t = NOe^{rt}$ जहाँ Nt = t समय में समष्टि घनत्व NO = शुन्य समय में समष्टि घन्तव <math>r = y प्राकृतिक वृद्धि की इंट्रिसिक दर e = y प्राकृतिक लघुगुणकों का आधार (2.71828)

(ii) संभार तंत्र वृद्धि – इस प्रकार के वृद्धि वक्र में समिष्ट की सजीव संख्या प्रारंभ में तो धीरे वृद्धि होती है इसके बाद वृद्धि अचानक से बढ़ती है। वातावरणीय प्रतिरोध बढ़ जाने के कारण संतुलन स्तर की स्थापना हो जाती है, इस प्रकार समिष्ट एवं समय के बीच ग्राफ S आकार (सिग्मॉइड वक्र) प्राप्त होता है।

- यह निम्न समीकरण द्वारा प्रदर्शित है।

$$\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$$

यहाँ N=t समय पर समष्टि घनत्व r= प्राकृतिक वृद्धि की इन्ट्रिसक दर k= पोषण क्षमता

7. छदमावरण एवं सहभोजिता को उदाहरण सहित समझाइए?

उत्तर छदमावरण (Camouflage) - अपने परिवेश में मिल जाने या वैसा बन जाने की जीव की क्षमता छद्मावरण कहलाती है। इस कारण परभक्षी शिकार को आसानी से नहीं पहचान पाता है।

- कीटो व मेंढ़कों की अनेक प्रजातिया परभिक्षयों से बचने के लिए यह क्रिया करते है।
- मोनार्क तितली के शरीर में एक विशिष्ट रसायन की उपस्थित के कारण उनके परभक्षी पिक्षयों को स्वाद खराब लगता है अत: आहार बनने से बच जाती है।

सहभोजिता – ऐसी पारस्परिक क्रिया एक जाति को लाभ होता है जबकी दूसरी जाति को न हानि होती है और न ही लाभ होता है। इस पारस्परिक क्रिया को सहभोजिता कहते है। Example:-

- (i) आम की शाखा पर अधिपादप के रूप में उगने वाला आर्किड और व्हेल की पीठ पर रहने वाले बार्नेकल को लाभ होता है, जबिक आम और व्हेल को न लाभ और न हानि होती है।
- (ii) पशु एवं बगुला के बीच संबंध, इसमें बगुले को भोजन प्राप्ति में लाभ
- (iii) समुद्री एनिमोन एवं क्लाउन मछली के बीच संबंध, इसमें समुद्री एनीमोन दंश स्पर्शक होते है जो इनके बीच रहने वाली क्लाउन मछली को परभक्षियों से सुरक्षा मिलती है।
- 8. अण्डे देने हेतु बर्र उपयुक्त स्थल के लिए अंजीर के पुष्पक्रम को पसंद करते है। कारण समझाइए।

उत्तर बर्र तथा अंजीर का उदाहरण सहोपकारिता का है। अंजीर के वृक्षो की अनेक जातियों में बर्र की परागणकारी जातियों के बीच अगाढ़ संबंध है। अंजीर की जाति केवल इसके 'साथी' वर्र की जाति से ही परागित हो सकती है, यह किसी वर्र की दूसरी जाति से परागित नहीं हो सकती है। मादा वर्र फल को केवल अण्ड निक्षेपण के लिए ही उपयोग में नहीं लेती, बल्कि फल के अन्दर वृद्धि कर बीजो को डिंबको के पोषण के लिए उपयोग करती है। अण्डे देने के लिए उपयुक्त स्थान की तलाश करते हुए वर्र अंजीर पुष्पक्रम को परागित करती है। इसके बदले में अपने कुछ परिवर्धनशील बीज परिवर्धनशील वर्र के डिबंको को आहार के रूप में देती है।

9. जीवन - वृत विभिन्तता को समझाते हुए अन्तर जातीय स्पर्धा को स्पष्ट कीजिए?

उत्तर समिष्ट जिस आवास में रहती है उसमें उच्चतम स्तर पर विकसित होने के लिए अपनी जनन क्षमता को पूर्ण विकसित करती है इसे डार्विनियन योग्यता कहते है।

- जब जीव किसी विशेष दबाव में आ जाते है तो वह सबसे अधिक दक्ष जनन युक्ति की ओर विकास करते है।
- कुछ अपने जीवन काल में केवल एक बार प्रजनन करती है जैसे बॉस एवं साइमन मछली
- कुछ छोटी साइज में अधिक संख्या में जीव उत्पन्न करती है। Ex. आयस्टर मछली

अन्तरजातिय स्पर्धा :- जैव विकास में एक सहायक शिक्तिशाली बल जिसमें दो विभिन्न जातियों के मध्य एक ही सीमित संसाधन हेतु स्पर्धा होती है अंतरजातिय स्पर्धा कहलाती है। Ex. एक ही वृक्ष में रहने वाली बार्वलर की 5 निकटतम संबंधित जातिया

- दक्षिणी अमेरिका की उथली झीलों में फ्लेमिंगो तथा मछलियों की साझा आहार स्पर्धा।

ॐॐॐ अध्याय **12**

पारितन्त्र

अंकभार - 05, वस्तुनिष्ठ - 1 ($\frac{1}{2}$ अंक), निम्बधात्मक - 1 (4 अंक)

						_
वस्तुनि	ाष्ठ प्रश्न:-				(स) द्वितीयक उपभोक्ता (द) अपघटक (द	()
1.	निम्नलिखित में से कौन	ासा पिरामिड सदैव सीधा हो	ता है?	9.	एक झील में द्वितीय (दूसरा) पोषण स्तर होता है।	
	(अ) जीवभार का पिरा	मिड			(अ) पादप प्लवक (ब) प्राणीप्लवक	
	(ब) जीव संख्या का पि	गरामिड			(स) नितलक (बेनथॉस) (द) मछलियाँ (ब	()
	(स) ऊर्जा का पिरामिड	-		10.	द्वितीयक उत्पादक है-	
	(द) उपर्युक्त में से कोः	ई नहीं	(स)		(अ) शाकाहारी (ब) उत्पादक	
2.	अपरद(डेट्राइट) किर	पसे मिलकर बने होते है?			(स) मांसाहारी (द) इनमें से कोई नहीं (अ	()
	(अ) फल तथा प्राणियों	के मृत अवशेष		11.	एक पारिस्थितिकी तंत्र क लिए ऊर्जा का स्त्रोत है-	
	(ब) पत्तियाँ				(अ) सूर्य (ब) ATP	
	(स) छाल एवं मलादि				(स) पौधो द्वारा निर्मित शर्करा	
	(द) उपरोक्त सभी		(द)		(द) हरे पौधे (अ	()
3.	मानव निर्मित पारिस्थि	तेक तंत्र है-		12.	निम्नलिखित में से कौनसा पारिस्थितिकी पिरैमि	ड
	(अ) वन पारिस्थितिक	तंत्र			सामान्यतः उल्टा होता है?	
	(ब) फसल पारिस्थितिक तंत्र				(अ) एक समुद्र में जैवभार का पिरैमिड	
	(स) घास स्थल पारिस्थि	थतिक तंत्र			(ब) ऊर्जा का पिरेमिड	
	(द) अलवणीय जल प	ारिस्थिति तंत्र	(অ)		(स) घास भूमि में संख्या का पिरेमिड	
4.	खाद्य-जाल में ऊर्जा क	ा प्रवाह होता है-			(द) एक वन में जैवभार का पिरैमिड (अ	;)
	(अ) एक-दिशीय	(ब) द्वि-दिशीय		13.	चारण (grazing) खाद्य श्रंखला में मांसाहारी को क	हा
	(स) त्रि-दिशीय	(द) चतुर्दिशीय	(अ)		जाता है-	
5.	खाद्य श्रृंखला में हरे पा	दपों का स्तर होता है-			(अ) प्राथमिक उत्पादक (ब) द्वितीयक उत्पादक	
	(अ) उत्पादक	(ब) प्राथमिक उपभोक्ता			(स) प्राथमिक उपभोक्ता (द) द्वितीयक उपभोक्ता (द	;)
	(स) द्वितीयक उपभोक्त	ना (द) अपघटक	(अ)	निबंधा	त्मक प्रश्न	
6.	इकोसिस्टम (पारितंत्र) शब्द सबसे पहले किसने ।	देया?	1.	अपघटन किसे कहते है? एक स्थलीय परितंत्र में अपघट	
	(अ) ई.हेकल	(ब) ई.पी. ओडम			चक्र का वर्णन कीजिए। इसका आरेखीय निरूप	ण
	(स) ए.जी. टेन्सले	(द) ई.वार्मिंग	(स)		बताइए।	
7.	प्रत्येक पोषण स्तर के ज	प्रत्येक पोषण स्तर के जीव द्वारा ऊर्जा का कितना प्रतिशत		उत्तर	अपघटन – वह प्रकिया जिसके द्वारा अपघटक जटिल कार्बीन	
	उपयोग होता है।				पदार्थो को अकार्बनिक तत्वों जैसे ${ m CO}_2$, जल एवं पोष पदार्थों में खण्डित करने में सहायता करते है उसे अपघर	
	(अ) 20%	(ৰ) 30%			कहते है। इस प्रक्रिया में कवक, जीवाणुओं, अन्य सूर्	
	(刊) 90%	(द) 10%	(स)		जीवों के अतिरिक्त छोटे प्राणी जैसे निमेटोड, कीट, केंच्	गुए
8.	•	निम्नलिखित में सर्वाधिक	संख्या		आदि का मुख्य योगदान रहता है। पौधों तथा जन्तुओं के म्	
	किसकी होती है?				अवशेषों को अपरद (डेट्राइट) कहते है। यह अपघटन लिए कच्चे पदार्थ का काम करते है।	क
	(अ) उत्पादक	(ब) प्राथमिक उपभोक्ता			ाराष्ट्र भाष्य पदाय का काम करत है।	

अपघटन की प्रक्रिया के प्रमुख चरण निम्नलिखित है-

- 1. विखण्डन 2. निक्षालन 3. अपचयन 4. ह्यूमस भवन
- 5. खनिजीकरण
- विखण्डन अपरदहारी (जैसे केंचुए) अपरद को छोटे छोटे कणों में तोड देते है इसे विखण्डन कहते है।
- 2. निक्षालन जल में धुलशील अकार्बनिक पोषक पदार्थ मृदा संस्तर में प्रवेश कर जाते है। ये अनुपलब्ध लवणों के रूप में अवक्षेपित हो जाते है।
- अपचयन जीवाणुओं एवं कवकों के एन्जाइमों द्वारा अपरदों को सरल अकार्बनिक पदार्थों में तोड़ा जाता है।
- 4. ह्यूमीफिकेशन गहरे रंग की क्रिस्टल रहित व पोषक पदार्थों से युक्त ह्यूमस का निर्माण होता है। इसका अपघटन बहुत ही धीमी गति से चलता रहता है। इसकी प्रकृति कोलाइडल होने के कारण यह पोषक के भण्डार का कार्य करता है।
- 5.खिनजीकरण ह्यूमस के सूक्ष्मजैविक अपघटन द्वारा अकार्बनिक पोषक तत्वो का निर्माण होता है।
- अपघटन की किया \mathbf{O}_2 की उपस्थिति में एवं गरम व आर्द्रतापूर्व वातावरण में तीव्रता से होती है।
- काइटीन व लिग्निन की अपघटन दर धीमी होती है। एक स्थलीय पारितंत्र में अपघटन चक्र का आरेखीय निरूपण निम्न प्रकार है-

 पारितन्त्र में ऊर्जा प्रवाह से आप क्या समझते है? विभिन्न पोषण स्तरों में से होते हुए ऊर्जा प्रवाह को समझाइए। एक खाद्य श्रृंखला का आरेखी चित्र बनाइए।

उत्तर पारिस्थितिक तंत्र ऊर्जा का प्रवेश, स्थानान्तरण, रूपान्तरण एवं वितरण उष्मागतिकी के दो मूल नियमों के अनुरूप होता है। प्रत्येक जीव को अपनी जैविक क्रियाओं के लिए ऊर्जा की आवश्यकता होती है। किसी भी पारिस्थितिक तंत्र में ऊर्जा का एकमात्र स्त्रोत सूर्य है। पृथ्वी पर पहुँचने वाली कुल प्रकाश ऊर्जा का केवल 1% भाग प्रकाश संश्लेषण द्वारा खाद्य ऊर्जा या रासायनिक ऊर्जा में रूपान्तरित हो पाता है। वनक्षेत्र में यह दक्षता 5% तक हो सकती है। शेष ऊर्जा का उष्मा के रूप में ह्यास हो जाता है। पृथ्वी पर कुल प्रकाश संश्लेषण का 90% भाग जलीय पौधो विशेषत: डायटमों, शैवालों द्वारा सम्पन्न होता है। कोई भी जीव प्राप्त की गई ऊर्जा के औसतन 10% से अधिक ऊर्जा अपने शरीर निर्माण में प्रयोग नहीं कर पाता तथा शेष 90% ऊर्जा का उष्मा के रूप में श्वसन आदि क्रियाओं में ह्यस हो जाता है अर्थात् खाद्य श्रंखला में ऊर्जा के स्थानान्तरण में एक पोषस्तर पर लगभग 10% ऊर्जा ही संग्रहीत होती है। इसे पारिस्थितिक दशांश का नियम कहते है। इस प्रकार यदि किसी स्थान पर सौर ऊर्जा की मात्रा 100 कैलोरी हो तो पादपों (प्राथमिक उत्पादक) को 10 कैलोरी, उन पादपो को चरने वाले शाकाहारी (प्राथमिक उपभोक्ता) को केवल 1 कैलोरी और उस शाकाहारी को खाकर मांसाहारी (द्वितीयक उपभोक्ता) में केवल 0.1 कैलोरी ऊर्जा संग्रहीत होगी तथा अपघटक तक यह बहुत न्यून मात्रा में पहुँचेगी। वास्तव में ऊर्जा संकल्पना में ऊर्जा का एक पोष स्तर से दूसरे पोष स्तर में स्थानान्तरण एवं रूपांतरण है

ऊर्जा प्रवाह

हरे पादप → प्राथमिक → द्वितीय → तृतीय (उत्पादक) उपभोक्ता उपभोक्ता उपभोक्ता किसी भी पारिस्थितिक तंत्र में ऊर्जा का प्रवाह एक दिशीय होता है। ऊर्जा प्रवाह हमेशा उत्पादक से उपभोक्ता की ओर होता है।

जलीय आवास में खाद्य श्रृंखला का आरेखी चित्र-पादपप्लवक → प्राणीप्लवक →छोटीमछली → (उत्पादक) प्रा.उपभोक्ता द्वि.उपभोक्ता बड़ी मछली वृ.उपभोक्ता

 खाद्य श्रृंखला की परिभाषा लिखिए। यह कितने प्रकार की होती है? खाद्य श्रृंखला व खाद्य जाल में अंतर लिखिए।

> जीवों की एक ऐसी श्रृंखला जिसमें भोजन के आधार पर जीव एक दूसरे से सम्बन्धित रहते है, उसे खाद्य श्रृंखला कहते है। विभिन्न परितंत्रों में मिलने वाली खाद्य श्रृंखलाएँ निम्नलिखित है-

(1) चारण खाद्य श्रृंखला / परभक्षी खाद्य श्रृंखला उदा. (i) घास स्थल खाद्य श्रृंखला

उत्तर

सत्र: 2023-24

घास \rightarrow टिङ्डा \rightarrow मेंढ़क \rightarrow सांप \rightarrow बाज

(ii) जलीय खाद्य श्रृंखला

उदा. पादपप्लवक ightarrow प्राणीप्लवक ightarrow छोटी मछली ightarrow बड़ी मछली

(2) परजीवी खाद्य श्रृंखला

उदा. वृक्ष →पक्षी → जूँ / चिड़ियां →जीवाणु

(3) अपरदी खाद्य श्रृंखला -

उदा. अपरद → केंचुआ → मेढ़क → सांप → चील

खाद्य श्रृंखला एवं खाद्य जाल में अन्तर

खाद्य श्रृंखला

खाद्य जाल

1. ऊर्जा का स्थानान्तरण 1. अनेक खाद्य श्रृंखलायें आपस उत्पादकों से सर्वोच्च में भोजन के लिए आपस में जुड़ उपभोक्ताओं में एक क्रम कर एक जाल बनाती है जिसे के रूप में होता है। खाद्य जाल कहते है।

 एक जीव केवल एक
 एक जीव एक से अधिक स्तर स्तर या अवस्था बनाए
 या अवस्था बनाए रख सकता है।
 रखता है।

3. इसमें ऊर्जा प्रवाह की 3. इसमें ऊर्जा प्रवाह की गणना आसानी से गणना की जा बहुत कठिन होती है। सकती है।

4. इसमें जीवों में समान 4. इसमें प्रतिस्पर्धा कई जीवों में स्तर पर सीमित प्रतिस्पर्धा समान व विभिन्न पोषक स्तरों पर होती है। होती है।

इसमें जीवों की संख्या
 अपेक्षाकृत जीवों की संख्या
 सीमित होती है।
 अधिक व असीमित होती है।

पारिस्थितिकी पिरामिड क्या है? जैवभार एवं जैवसंख्या के पिरामिड को समझाइए-

उत्तर पारितन्त्र में प्राथमिक उत्पादकों तथा विभिन्न श्रेणी के उपभोक्ताओं के परस्पर आनुपातिक खाद्य सम्बन्धों को जैवभार, जीव संख्या व ऊर्जा प्रवाह के आधार पर रेखाचित्रों द्वारा दर्शाया जा सकता है, जिन्हे पारिस्थितिक स्तुप या पिरामिड कहते है।

> - प्रत्येक स्तूप के आधार में उत्पादक (प्रथम पोषण स्तर) तथा शीर्ष की ओर क्रमश: प्राथमिक उपभोक्ता (द्वितीयक पोषण स्तर) द्वितीयक उपभोक्ता (तृतीय पोषण स्तर) एवं तृतीय या सर्वोच्च उपभोक्ता (चतुर्थ पोषण स्तर) दर्शाए जाते है।

> (1) जैव भार का पिरामिड - एक पारिस्थितिक तंत्र के

जीवों का जो इकाई क्षेत्र में शुष्क भार होता है उसे जैव भार कहते है।

जैवभार के आधार पर जो पिरामिड बनते है उनसे यह ज्ञात होता है कि प्राय: उत्पादक स्तर का जैवभार क्रमश: कम होता है। जैवभार के आधार पर स्थलीय पारिस्थितिक तंत्रों के पिरामिड सीधे बनते है, जैसे- घास के जैवभार के पिरामिड। इसमें उत्पादक से उपभोक्ता की ओर क्रमश: जैवभार की निरन्तर कमी होती जाती है।

- समुद्र में जैवभार के पिरामिड प्राय: उल्टे होते है क्योंकि मछिलयों का जैवभार पादपप्लवकों एवं प्राणीप्लवकों से बहुत अधिक होता है।
- एक विशाल वृक्ष के जैवभार का पिरामिड सीधा बनता है।
- (i) घास स्थल के जैवभार का पिरामिड- सीधा

(ii) जलीय पारितन्त्र का जैवभार पिरामिड - उल्टा

(iii) एक वृक्ष पारितन्त्र के जैवभार का पिरामिड - सीधा

2. जीवों की संख्या के पिरामिड – जब किसी पारिस्थितिक तंत्र के उत्पादक, प्राथमिक, द्वितीयक व तृतीयक श्रेणी के उपभोक्ताओं के जीवों की संख्या का चित्रण किया जाता है तो उसे जैव संख्या का पिरामिड कहते है। यह पिरामिड सीधा या उल्टा हो सकता है। घास स्थलीय पारिस्थितिक तंत्र में उत्पादक घास होती है जो संख्या में सर्वाधिक होती है। परंतु इसक पश्चात उपभोक्तओं की संख्या निरन्तर कम होती जाती है अत: इसका पिरामिड सदैव सीधा होता है।

इसी प्रकार जलीय पारिस्थितिक तंत्र का जीवसंख्या का पिरामिड सीधा होता है। इसमें पादप प्लवक मुख्य उत्पादक होते है जो संख्या में सर्वाधिक होते है। इसके पश्चात विभिन्न श्रेणी के उपभोक्ताओं की संख्या में निरंतर कमी होती जाती है। वन पारिस्थितिक तंत्र में जीवों की संख्या के पिरामिड की आकृति कुछ अलग की प्रकार की होती है। क्योंकि इसमें उत्पादक बड़े आकर के वृक्ष होते है। परन्तु संख्या में कम होते है। इनमें शाकाहारी उपभोक्तओं की संख्या में निरंतर कमी आती जाती है परन्तु फिर भी यह सीधा होता है। परजीवी खाद्य श्रृंखला में जैवसंख्या का पिरामिड सदैव उल्टा होता है क्योंकि एक पौधा अनेक परजीवियों की वृद्धि हेतु पर्याप्त होता है तथा ये परजीवी अनेक परस्पर जीवों को पोषणता प्रदान करने में सक्षम होते है। इस प्रकार निरन्तर उत्पादक से उपभोक्ताओं की ओर संख्या बढ़ने के कारण उल्टी आकृति का पिरामिड बनता है।

- 5. (i) उत्पादक किसे कहते है?
 - (ii) प्राथमिक उत्पादकता व द्वितीय उत्पादकता में अंतर कीजिये।
 - (iii) नेट प्राथमिक उत्पादक क्या है?
- उत्तर (i) परितंत्र में जैव भार उत्पादन की दर को उत्पादकता कहते है।
 - (ii) प्राथमिक उत्पादकता व द्वितीय उत्पादकता में अंतर

प्राथमिक उत्पादकता

द्वितीयक उत्पादक

1. उत्पादक द्वारा एक

 उपभोक्ता द्वारा एक निश्चित समयाविध में कार्बिनिक पदार्थ

निश्चित समयाविध में कार्बनिक पदार्थ के

के उत्पादन की मात्रा की दर

उत्पादन की मात्रा की दर द्वितीयक उत्पादकता है। प्राथमिक उत्पादकता है। इसे भार g/m² या ऊर्जा (Kcal/m²) के रूप में व्यक्त किया जा

सकता है।

2. प्रकाश संश्लेषण के

2. यह शाकाहारियों तथा परभक्षियों

कारण होता है।

द्वारा होता है।

(iii) नेट प्राथमिक उत्पादकता – प्राथमिक उत्पादकों कि श्वसन क्रिया (R) के बाद बचे हुए जैवभार या ऊर्जा की दर को शुद्ध प्राथमिक उत्पादकता (NPP) कहते है।

NPP = GPP-R

अध्याय **13**

जैव विविधता एवं संरक्षण

अंकभार -3, वस्तुनिष्ठ प्रश्न -2 (प्रत्येक $\frac{1}{2}$ अंक), रिक्त स्थान-1 ($\frac{1}{2}$ अंक) लघुत्तरात्मक - 1 ($\frac{1}{2}$ अंक)

				(अ) विदेशी जातियों का आक्रमण				
1.	जैव विविधता शब्द किस वैज्ञानिक द्वारा प्रचलित किया गया?				(ब) आवासीय क्षति व विखण्डन			
					(स) सूखा और बाढ़	(द) आर्थिक दोहन	(ब)	
	(अ) रॉबर्ट मेए	(ब) पाल एहरलिक		10.	बाह्य स्थाने संरक्षण का एक उदाहरण कौनसा है?			
	(स) एडवर्ड विलसन	(द) टिल मैन	(स)		(अ) राष्ट्रीय उद्यान	(ब) बीज बैंक		
2.	भारत में कुल कितने तप्त स्थल है?				(स) वन्य प्राणी अभयारण्य			
	(अ) चार	(ब) तीन			(द) पवित्र उपवन		(ब)	
	(स) दो	(द) पाँच	(ब)	11.	कौनसा संगठन जातियों	की रेड सूची प्रकाशित क	रता है?	
3.	IUCN की लाल सूची के अनुसार निम्नलिखित में से				(अ) आई.सी.एफ.आर.आई.			
	कौनसी जाति विलुप्त हो चुकी है [?]				(ब) आई.यू.सी.एन.			
	(अ) डोडो	(ब) क्वेगा			(स) यू.एन.ई.पी.	(द) डब्ल्यू.डब्ल्यू.एफ	(ब)	
	(स) थाइलेसिन	(द) उपर्युक्त सभी	(द)	12.	वर्ष 1992 में जैव विविध	यता पर एतिहासिक पृथ्वी स	म्मेलन	
4.	संसार में पायी जाने वाली सम्पूर्ण जैव विविधता का लगभग				कहाँ हुआ था?			
	कितना प्रतिशत भाग भ	ारत में विद्यमान है?			(अ) सिडनी	(ब) जोहन्सबर्ग		
	(अ) 12	(অ) 7			(स) रियोडिजिनरियों	(द) नई दिल्ली	(स)	
	(स) 8		(स)	13.	पॉल एहरलिक द्वारा उप	पयोग की गई परिकल्पना	ह े-	
5.	रेड डेटा बुक की सूची में जातियां होती है-				(अ) पोपर परिकल्पना	(ब) सोपर परिकल्पना		
	(अ) सुभेद्य	-			(स) सिवेट पोपर परिक	ल्पना		
	(स) संकटापन्न	·	(द)		(द) रिवेट पोपर परिकल	पना	(द)	
6.	भारत का राष्ट्रीय जलीय प्राणी कौनसा है?			14.	प्रकृति में सबसे अधिक	प्रजातियाँ किसकी है?		
	(अ) ब्लू व्हेल	(ब) समुद्री घोड़ा			(अ) कवकों की	(ब) कीटों की		
	(स) गंगा की शार्क	(द) नदी की डोल्फिन	(द)		(स) पक्षियों की	(द) आवृतबीजियों की	(ब)	
7.	रोबर्ट मेए के अनुसार विश्व में जाति विविधता लगभग			रिक्त र	स्थानों की पूर्ति कीजिए:-			
	कितनी है?			1.	मेघालय के	बहुत सी दुर्लभ पादप जाति	यों की	
	(अ) 10 मिलियन	•			शरण स्थली है।			
	(स) ७ मिलियन	(द) 20 मिलियन	(स)	2.	एक जाति के विलुप्त हो	ने पर उस पर आधारित दूर	परे जंतु	
8.	संसार में कुल जैव विविधता हॉट-स्पॉट है-				व पादप जातियों भी अ	निवार्य रूप से विलुप्त होने	लगती	
	(अ) 25	(অ) 9			है कहला	ता है।		
	(स) 36	(द) 34	(द)	3.		की ओर जाने पर जाति वि	विधता	
9.	पादपों और जन्तुओं को विलोपन के कगार पर लाने के				घटती जाती है।			
	लिए निम्नलिखित में से कौनसा सबसे महत्तवपूर्ण कारक			4.	को पृथ्वी का फेफड़ा कहते है।			
	है?			5	जीव जातियों का उनके पाकृतिक वाम स्थानों में मुख्या			

करना कहलाता है।

भारत वर्ष में सबसे अधिक आनुवंशिक विविधता 6. की फसल में होती है।

1. पवित्र उपवन, 2. सह-विल्पता, 3. भूमध्य रेखा से ध्रुवो, उत्तर 4. अमेजॉन वर्षा वन, 5. स्वस्थाने संरक्षण, 6. चावल

लघुत्तरात्मक प्रश्न

जैव विविधता से आप क्या समझते है? इसकी क्षति के 1. क्या कारण है?

जैव विविधता - जैविक संगठन के प्रत्येक स्तर पर वृहद उत्तर अणुओं से लेकर जीवोम तक अत्यधिक विविधता पायी जाती है। इसे ही जैवविधिता कहते है। जैव विविधता क्षति के कारण - (i) आवासीय क्षति तथा विखण्डन (ii) अतिदोहन (iii) विदेशी जातियों का आक्रमण (iv) सह-विलुप्तता

जैव विविधता के 'तप्त स्थान'(हॉट स्पॉट) क्या है? इनका 2. महत्व बताइए।

उत्तर जैव विविधता तप्त स्थल ऐसे क्षेत्र होते है जहाँ जातिय समृद्धि बहुत अधिक व उच्च स्थानिकता पायी जाती है। इसका महत्व पृथ्वी पर जैव विविधता को बनाए रखना है। इन स्थलों को सुरक्षित रखकर जातियों की विलोपन की दर को 30% तक कम किया जा सकता है। ये क्षेत्र पृथ्वी के सम्पूर्ण भू-क्षेत्र के लगभग 2% भाग का प्रतिनिधित्व करते है, अत: सम्पूर्ण भ्-क्षेत्र की अपेक्षा इनकी सुरक्षा व्यवस्था करना ज्यादा आसान है तथा यह अधिक लाभदाय है।

यदि उष्ण कटिबंधीय वर्षा वनों का विस्तार पृथ्वी के 3. वर्तमान के 6% के स्थान पर 12% कर दिया जाए तो जैवविविधता किस प्रकार प्रभावित होगी? सकारण समझाइए।

जब वर्षा वनों का पृथ्वी पर विस्तार होगा तो इससे जैव उत्तर विविधता में बढ़ोतरी होगी। वर्षा वनों में करोड़ो जातियाँ निवास करती है। इससे पादप उत्पादकता बढ़ेगी। जीव जन्तुओं को अच्छा आश्रय व भोजन प्राप्त होगा तथा पर्याप्त सुरक्षा रहेगी। पर्यावरणीय समस्याओं में कमी आएगी। समस्त प्रकार के जंगली जीवों की संख्या बढ़ेगी जिससे जैव विविधता में वृद्धि होगी।

जैव विविधता का संरक्षण कितनी प्रकार से किया जाता 4. है किसी जीव को विलोपन के संकट से बचाने के लिए किस प्रकार से संरक्षण करेंगे।

जैव विविधता का संरक्षण निम्न दो प्रकार से किया जाता है। उत्तर (i) स्वस्थाने संरक्षण (ii) बाह्य स्थाने संरक्षण

- (i) स्वस्थाने संरक्षण इस संरक्षण तकनीक में जीवों को उनके प्राकृतिक आवास में ही संरक्षित किया जाता है। इसलिए इसे स्वस्थाने संरक्षण कहते है। स्वस्थाने संरक्षण के निम्न रूप दिए गए है-
- (i) राष्ट्रीय उद्यान (ii) वन्य जीव अभयारण्य (iii) जीवमण्डल आरक्षित क्षेत्र (iv) जैव विविधता हॉट स्पॉट (v) सांस्कृतिक व धार्मिक मान्यताऐं-
- 2. बाह्य स्थाने संरक्षण इस प्रकार के संरक्षण में जीवों को उनके मूल आवास या स्थान से हटाकर बाहर मानव निर्मित आवास में संरक्षण प्रदान किया जाता है। बाह्य स्थाने संरक्षण के निम्न तरीके है-
- (i) जंतु उद्यान (ii) वानस्पतिक उद्यान (iii) जन्तु घर (iv) जीन बैंक (v) बीज बैंक (vi) निम्नताप परिरक्षण (vii) प्रयोगशालाए (viii) उत्तक संवर्धन

उष्ण कटिबंधीय क्षेत्रों में शीतोषण कटिबंधीय क्षेत्रों से 5. अधिक जैव विविधता पायी जाती है। इसके कोई दो कारण बताइए?

उत्तर (i) उष्ण कटिबंधीय पर्यावरण, शीतोषण पर्यावरण से भिन्न तथा कम मौसमीय परिवर्तन वाला होता है। यह स्थिर पर्यावरण निकेत विशिष्टीकरण को बढावा देता है जिसके कारण अधिक जैव विविधता पाई जाती है।

> (ii) उष्ण कटिबंधीय क्षेत्रों में अधिक सौर ऊर्जा उपलब्ध होती है जिससे उत्पादन अधिक होता है जिससे परोक्ष रूप से अधिक जैव विविधता होती है।

पवित्र उपवन से आप क्या समझते है?

पवित्र उपवन ऐसे प्राकृतिक स्थल है, जहाँ पादपों व जन्तुओं उत्तर का सांस्कृतिक व धार्मिक दृष्टि से अत्यधिक महत्त्व होता है। लोग पादपो व जन्तुओं की पूजा भी करते है तथा उनके संरक्षण को अत्यधिक महत्त्व देते है। मेघालय के पवित्र वन में दुर्लभ पादप व जन्तुओं को संरक्षण मिला हुआ है। उदाहरण - राजस्थान की अरावली, कर्नाटक व महाराष्ट्र के

पश्चिमी घाट आदि।

जैव विविधता का परितंत्र में महत्व लिखिए 7.

- 1. परितंत्र की स्थिरता व साम्यवस्था जैव विविधता पर ही निर्भर करती है।
 - 2. जैव विविधता अधिक होने पर परितंत्र की उत्पादकता भी अधिक होती है।
 - 3. स्वस्थ परितंत्र के लिए जैव विविधता का अधिक होना आवश्यक है।
- स्वस्थाने व बाह्य स्थाने संरक्षण में अंतर स्पष्ट कीजिए। 8.

उत्तर

उत्तर

उत्तर

_		
	स्वस्थाने संरक्षण	बाह्य स्थाने संरक्षण
	1. जीवों का संरक्षण उनके	1. जीवों का संरक्षण उनके
	प्राकृतिक आवास में किया	प्राकृतिक आवास से बाहर मानव
	जाता है।	निर्मित आवासों में किया जाता
		है
		`
	2. उदा. राष्ट्रीय उद्यान,	2. उदा. जन्तु उद्यान,
	2. उदा. राष्ट्रीय उद्यान, वन्य जीव अभयारण्य,	2. उदा. जन्तु उद्यान, वानस्पतिक उद्यान, जीन बैंक,
		_

9. निम्नताप परिरक्षण तकनीक का जैव महत्व लिखिए-

निम्नताप परिरक्षण तकनीक द्वारा संकट ग्रस्त जातियो के युग्मकों को जीवित व जननक्षम अवस्था में अत्यधिक निम्न ताप (-196° C) पर द्रव नाइट्रोजन में संरक्षित किया जाता है। इस प्रकार संरक्षित युग्मको से पात्र निषेचन द्वारा संकटग्रस्त जाति के जीव उत्पन्न किये जा सकता है।

शेखावाटी मिशन 100 की कक्षा 10 एवं 12 के विभिन्न विषयों की नवीनतम बुकलेट डाउनलोड करने हेतु टेलीग्राम QR CODE स्कैन करें।

मॉडल पेपर - प्रथम

उच्च माध्यमिक परीक्षा -2024

विषय : जीव विज्ञान

समय : ——	3 घण्टे, 15 मिनट			पूर्णांक	: 80		
खण्ड(अ)				(vi) ग्रिफिथ ने अपना प्रयोग जीवाणु पर किया-			
बहुविकल्पी प्रश्न - (प्रत्येक प्रश्न का अंक-½) (½×16=8)				(अ) साल्मोनेला टॉइफी	(अ) साल्मोनेला टॉइफी (ब) लैक्टोबैसिलस लैक्टिस		
प्र. 1.	सही विकल्प चुनिये-			(स) स्यूडोमोनास प्यूटिडा (द) स्ट्रेप्टोकॉकस न्यूमोनी()			
	(i) निषेचित भ्रूणकोष में होता है-			(vii) संक्रामक रोग नहीं है-			
	(अ) अंड कोशिका, भ्रूण, भ्रूणपोष			(अ) हैजा	(ब) मलेरिया		
	(ब) सहायक कोशिका, प्रतिमुखी कोशिका, केन्द्रीय कोशिका			(स) क्षय रोग	(द) जुकाम	()	
	(स) युग्मनज व भ्रूणपोष			(viii) पूर्वी अफ्रीका के मानव था -	घास स्थलों में वास क	ाने वाला	
	(द) युग्मनज, भ्रूणपोष व द्वितीयक केन्द्रक ()			(अ) आस्ट्रेलोपिथेसिन	(ब) रामपिथेकस		
	(ii) वृषणकोश में तापमान शरीर के ताप से कम होता है-			(स) ड्रायोपिथेकस	(द) होमो हैबिलिस	()	
	(अ) 2°C	(অ) 4°C		(ix) सबसे बड़ा डाइनोर	पोर था-		
	(स) 6⁰С	(द) 8 ⁰ C	()	(अ) ट्राइनोसोरस	(ब) स्टैगोसोरस		
	(iii) क्लाइनफेल्टर सिण्ड्रोम से ग्रसित व्यक्ति का			(स) टेरेनोडोन	(द) ब्रैकियोसोटस	()	
	जीनोटाइप है-			(x) बायोगैस में निम्न में से किस गैस की मात्रा सर्वाधिक होती है-			
	(अ) 44+XO	(অ) 44+XYY					
	(स) 44+XXY	(द) 45+XY	()	(अ) ब्यूटेन	(ब) मैथेन		
	(iv) तांबा मोचक आईयूडी है-			(स) प्रोपेन	(द) CO ₂	()	
	(अ) Cu-T	(অ) Cu-7		(xi) प्रतिबंधित एण्डोन्यू	र्विलएज एंजाइमो के स्रो	ात है-	
	(स) मल्टीलोड -375	(द) उपरोक्त सभी	()	(अ) कवक	(ब) जीवाणु		
	(v) पक्षियों में लिंग सूत्रों का सही जोड़ा है -			(स) विषाणु	(द) उपरोक्त सभी	()	
	(अ) ZZ - नर, ZW - मादा			(xii) गोल्डन राइस (ट्रांसजैनिक फसल) का सेवन किस रोग से बचाता है-			
	(ब) ZW - नर, ZZ - मादा			(अ) स्कर्वी	(ब) रतौंधी		
	(स) XX - नर, XO - मादा			(स) बेरी-बेरी	(द) उपरोक्त में नहीं	()	
	(द) XO - नर, XX - ग	नादा	()				

शेखावाटी मिशन-100	सत्र : 2023-24
(xiii) ऑफ्रिस नामक आर्किड पादप परागण हेतु का सहारा लेता है-	(vi) जीवों की ऐसी जातियाँ जो केवल क्षेत्र-विशेष में ही पायी जाती हैं। उन्हें जातियाँ कहते हैं।
(अ) लैंगिक कपट (ब) अलैंगिक कपट	(vii)एक प्रतिरक्षा संदमक औषिध है जो अंग प्रत्यारोपण वाले रोगियों को दी जाती है।
(स) कायिक कपट	
(द) उपरोक्त में से कोई नहीं ()	(viii) 'रोजी' नामक गाय के दूध में मानव प्रोटीन पायी जाती है जो पौषकता की दृष्टि से अति महत्वपूर्ण
(xiv) खाद्य जाल में ऊर्जा प्रवाह होता है-	होती है।
(अ) एकदिशीय (ब) द्विदिशीय	(ix) मानव शरीर में विषाणु संक्रमण के पश्चात् प्रतिरक्षा तंत्र द्वारा उत्पन्न की जाने वाली विशिष्ट प्रतिरक्षी प्रोटीन को
(स) बहुदिशीय	द्वारा उत्पन्न को जान पाला प्यारास्ट प्रातरक्षा प्राटीन की कहते हैं।
(द) उपरोक्त में से कोई नहीं ()	(x) गुणसूत्र पर जीन स्थिति वाले स्थान को
(xv) दी गई खाद्य शृंखला में द्वितीयक उत्पादक है-	कहते हैं।
घास $ ightarrow$ टिड्डा $ ightarrow$ मेंढ़क $ ightarrow$ सर्प	प्रश्न 3. निम्न प्रश्नों के उत्तर एक शब्द या एक पंक्ति में दीजिए- (प्रत्येक 1 अंक)
(i) (ii) (iv)	(i) वंशावली विश्लेषण के अन्तर्गत मैथुन एवं संबंधियों में
(अ) केवल (i) (ब) (i) व (ii)	मैथुन के लिए प्रयुक्त प्रतीक चिन्हों को दर्शाइए-
(स) (ii) व (iii) (द) (ii), (iii) व (iv) ()	(ii) यदि DNA की कोडिंग रज्जुक 5' AGTCAGTCC
(xvi) व्यष्टि⁄समष्टि स्तर के पारिस्थितिकीय अध्ययन कोकहते हैं।	TGACTGA3' हो तो अनुलेखन पश्चात् निर्मित m-RNA में N_2 - क्षारकों का $5' \rightarrow 3'$ दिशा में क्रम क्या होगा?
(अ) संपारिस्थितिकी (ब) स्वपारिस्थितिकी	(iii) हार्डी वीनबर्ग समीकरण लिखिए।
(स) समष्टि पारिस्थिति की	(iv) अनुलेखन इकाई के भागों के नाम लिखो।
(द) ब व स दोनों ()	(v) एक प्रारूपिक द्विलिंगी पुष्प की अनुदैर्ध्य काट का नामांकित चित्र बनाइए।
प्रश्न 2. रिक्त स्थानों की पूर्ति कीजिए। (प्रत्येक ½ अंक)	(vi) अनुकूली विकिरण का उदाहरण दीजिए।
(i) विपुंसन पश्चात् पुष्पों को सैलुलोज से बनी थैलियों से ढ़कने की क्रिया को कहते हैं।	3 30
(ii) प्रसव क्रिया के समय गर्भाशयी संकुचनों को हॉर्मोन प्रेरित करता है।	(viii) उस जीवाणुजन्य उत्पाद का नाम बताइए जिसका उपयोग 'थक्का स्फोटन' में होता है।
(iii) द्विसंकर संकरण प्रयोग में ${ m F_2}$ पीढ़ी का जीनोटाइप अनुपात	ਮਗਾਰ (a)

खण्ड(ब)

लघुत्तरात्मक प्रश्न संख्या 04 से 15 (प्रत्येक 1½ अंक)

- ट्यूबक्टॉमी व वैसेक्टॉमी में विभेद करिए। प्रश्न 4.
- फ्लोरीकल्चर क्या है? एक प्रारूपिक पुंकेसर का प्रश्न 5. नामांकित चित्र बनाइए।

..... होता है।

में प्रतान अंग होते हैं।

(iv) विकासीय आधार पर बोगेनविलिया में काँटे व कुकुरबिटा

(v) ${
m DNA}$ के वे ${
m N_2}$ - क्षारक जो रेस्ट्रीक्शन एन्जाइमों द्वारा पहचान कर काटे जाते हैं, कहलाते हैं।

शेखावाटी मिशन-100

सत्र: 2023-24

- प्रश्न 6. यदि एक हीमोफीलिक पुरुष का विवाह, सामान्य महिला से हो तो उत्पन्न होने वाली पुत्रियाँ कितने प्रतिशत होमोफिलिक होंगी?
- प्रश्न 7. बायोगैस संयंत्र का चित्र बनाइए तथा बायोगैस उत्पादन में प्रयुक्त सूक्ष्मजीव का नाम लिखिए।
- प्रश्न 8. पवित्र उपवन क्या है? ये किस प्रकार जैव विविधता के संरक्षण में महत्वपूर्ण हैं?
- प्रश्न 9. मानव के लिए ट्रांसजैनिक जंतुओं के महत्व को उदाहरण द्वारा समझाइए।
- प्रश्न 10. सूक्ष्म अंतक्षेपण तकनीकी की व्याख्या कीजिए।
- प्रश्न 11. Bt-विष क्या है? कपास के बॉल कृमि को जैविक रूप से नियंत्रित करने हेतु प्रयुक्त जीनों के नाम लिखिए।
- प्रश्न 12. द्विनिषेचन व त्रिकसंलयन को समझाइए।
- प्रश्न 13. मानव में लिंग निर्धारण की क्रिया की व्याख्या कीजिए। आवश्यक चित्र भी बनावें।
- प्रश्न 14. प्राथमिक एवं द्वितीयक अपशिष्ट उपचार में अंतर लिखिए।
- प्रश्न 15. वाहक से क्या तात्पर्य है? प्लाज्मिड वाहक PBR³²² को चित्र द्वारा दर्शाइए।

खण्ड(स)

दीर्घ उत्तरीय प्रश्न : प्रश्न सं.16 से 18 के उत्तर लिखिए। (शब्द सीमा 100 शब्द) (प्रत्येक प्रश्न 3 अंक)

प्रश्न 16. रजोदर्शन क्या है? आर्तव चक्र की विभिन्न अवस्थाओं को समझाइए।

अथवा

निम्न पर संक्षिप्त टिप्पणी लिखो-

- (1) एक्रोसोम (2) अपरा
- (3) रोपण

प्रश्न 17. न्यूक्लियोसोम किसे कहते हैं? DNA की द्विरज्जुकी पॉली न्यूक्लियोटाइड श्रृंखला का चित्र बनाइए तथा संरचना की व्याख्या कीजिए।

अथवा

मानव जीनोम परियोजना को महापरियोजना क्यों कहा गया है। मानव जीनोम की कोई चार विशेषताएँ लिखिए।

प्रश्न 18. समष्टि घनत्व से आप क्या समझते हैं? समष्टि घनत्व को प्रभावित करने वाले कारक लिखिए।

अथवा

आयु वितरण से क्या तात्पर्य है? आयु वितरण किस प्रकार समष्टि का निर्धारण करता है?

खण्ड(द)

निबन्धात्मक प्रश्न : प्रश्न सं. 19 व 20 के उत्तर लिखिए। (शब्द सीमा 150 शब्द) (प्रत्येक प्रश्न 4 अंक)

प्रश्न 19. (i) मेटास्टेसिस क्या है?

- (ii) सुदभ व दुर्दम अर्बुद में विभेद करिए।
- (iii) मॉर्फीन की रासायनिक संरचना लिखिए।
- (iv) एल्कॉहल सेवन के प्रभाव लिखिए।

अथवा

हाथीपाँव रोग के रोगजनक व वाहक का नाम लिखो। मलेरिया परजीवी के जीवन - चक्र को नामांकित चित्र की सहायता से समझाइए।

प्रश्न 20. खाद्य श्रृंखला की परिभाषा लिखिए। यह कितने प्रकार की होती है? खाद्य शृंखला व खाद्य जाल में अंतर लिखो। खाद्य शृंखला का आरेखीय चित्र बनाइए।

अथवा

पारिस्थितिक पिरामिड किसे कहते हैं? इसकी गणना में किन बातों का ध्यान रखना चाहिए? घास के मैदान की पारिस्थितिक तंत्र एवं ऊर्जा प्रवाह के पिरामिड का चित्र बनाइए।

मॉडल पेपर - द्वितीय

उच्च माध्यमिक परीक्षा -2024

विषय : जीव विज्ञान

गमय : 3 घण्टे, 15 मिनट पूर्णांक : 80							
खण्ड(अ)			(vi) मानव विकास के क्रम में कौनसे मानव के मस्तिष्क का आकार 1400 सीसी था-				
	•	1 से 16) निम्न प्रश्नों के र उत्तर पुस्तिका में लिखिए		(अ) ड्रायोपिथिकस	(ब) निएंडरथल		
	प्रश्न ½ अंक)			(स) होमोइरेक्टस	(द) होमोहेबीलस	()	
7 . 1.	. सही विकल्प चुनिये-		(vii) निम्न में असंगत	} -			
	•	(i) यदि एक पौधे की लघुबीजाणु मातृ कोशिका में 12			(अ) हाथीपांव-फाइलेरियाई कृमि		
	गुणसूत्र है तो भ्रूणपोष में कितने गुणसूत्र होंगे।			(ब) मलेरिया रोगी में कपकंपी-हीमोजोइन			
	(अ) 6	(অ) 12		(स) यौन संचरित रोग	- कैंसर		
	(स) 18	(द)20	()	(द) एड्स - एलाइस	परीक्षण	()	
	(ii) भ्रूण तथा गर्भाशय के बीच संवहनीय सम्पर्क बनाने वाली संरचना है।		(viii) गोबर गैस में काम आने वाले जीवाणु है-				
	(अ) अपरा	(ब) ब्लास्टूला		(अ) मिथेनोजन	(ब) नाइट्रीकारी जीवा	णु	
	(स) फैलोपियन नलिव	का (द) इनमें से कोई नह	î ()	(स) विनाइट्रीकारी जीव	त्राणु		
	(iii) उल्बवेधन (एग्नीयोसेन्टेसिस) जाँच है-		(द) सल्फर जीवाणु		()		
	(अ) गर्भ निरोधक परीक्षण			(ix) किसके पिरामिड	हमेशा सीधे प्राप्त होते है-	-	
	(ब) बंध्यता परीक्षण			(अ) जैवभार	(ब) संख्या		
	(स) भ्रूणीय लिंग परी	·क्षण		(स) ऊर्जा	(द) सभी	()	
	(द) HIV परीक्षण		(x) प्रथम खोजा गया प्रतिबंधित एन्जाइम है-				
	(iv) निम्न में से उत्परि	विर्तनजन है-		(अ) DNAas-I	(অ) Hind II		
	(अ) मस्टर्ड गैस	(অ) X-Ray		(स) Eco RI	(द) काइटिनेज	()	
	(स) UV-Ray	(द) उपरोक्त सभी	()	(xi) पीड़क प्रतिरोधी प	फ्सल है−		
	(v) प्यूरीन नाइट्रोजनी	ो क्षार है-		(अ) Bt-कपास	(ब) Bt- मक्का		
	(अ) साइटोसीन	(ब) युरेसिल		(स) Bt- टमाटर	(द) उपरोक्त सभी	()	
	(स) थाइमिन	(द) एडिनिन	()				

उपरोक्त चित्र में P एवं Q है।

- (अ) जन्मदर, मृत्युदर
- (ब) लिगांनुपात, घनत्व
- (स) घनत्व, जन्मदर
- (द) जन्मदर, लिंगानुपात ()

(xiii) वर्ष 1992 में 'जैव विविधता' पर पृथ्वी सम्मेलन कहा हुआ था।

- (अ) सिडनी
- (ब) जोहान्सबर्ग
- (स) रियो डी जेनेरियो
- (द) नई दिल्ली ()

(xiv) खाद्य शृंखला में हरे पादपों का स्तर होता है।

- (अ) उत्पादक
- (ब) प्राथमिक उपभोक्ता
- (स) द्वितीयक उपभोक्ता (द) अपघटक
- (xv) एक जाति के विलुप्त होने पर उस जाति पर आधारित दूसरे जन्तु व पादप जातियां भी विलुप्त होने लगती है। इस घटना को कहते है।
- (अ) सहोपकारिता
- (ब) सहविलुप्तता
- (स) सहभोजिता
- (द) इनमें से कोई नहीं ()

(xvi) स्पर्धी अपवर्जन के नियम के प्रतिपादक है।

- (अ) चार्ल्स एल्टन
- (ब) ए.जी. टेन्सले
- (स) ए.एफ. गॉसे
- (द) ई.पी. ऑडम (

प्रश्न 2. रिक्त स्थानों की पूर्ति कीजिए।(प्रत्येक प्रश्न ½ अंक)

- (i) पार्थेनियम पादप के परागकण मानव में रोग उत्पन्न करते है।
- (ii) निषेचन पश्चात अण्डाशय में परिवर्तित हो जाता है।
- (iii) मनुष्य में दात्र कोशिका रक्ताल्पता (सिकल सेल एनिमिया) रोग उत्परिवर्तन का उदाहरण है।

- (iv) मानव में ज्ञात सबसे बड़ी जीन है। जिसमें 2.4 करोड़ क्षार है।
- (v) डार्विन की फिंचे का सर्वोत्तम उदाहरण है।
- (vi) दुग्ध स्त्रावण के प्रारंभिक दिनों के दौरान माँ द्वारा स्त्रावित पीले से तरल कोलस्ट्रम में प्रतिरक्षी की प्रचुरता होती है।
- (vii) साइक्लोस्पोरिन- A का उत्पादन कवक से प्राप्त किया जाता है।
- (viii) DNA की लाखों प्रतियां कम समय मेंविधि द्वारा प्राप्त किया जाता है।
- (ix) प्रत्येक पादप आनुवांशिक रूप से मूल पादप के समान होते है जहां से वह पैदा हुए है इन्हें कहते है।
- (x) हॉट-स्पाट को विशेष सुरक्षा द्वारा विलोपन की दर को प्रतिशत कम किया जा सकता है।

प्रश्न 3. निम्न प्रश्नों के उत्तर एक शब्द या एक पंक्ति में दीजिए-(प्रत्येक प्रश्न 1 अंक)

- (i) परागकण की बाह्यभिति में पाये जाने वाले रसायन का नाम लिखिए।
- (ii) ट्राईसोमी की सूत्रगुणिता लिखिए।
- (iii) प्रारम्भिक एवं समापन कोडोन को लिखिए।
- (iv) आनुवांशिक अपवाह को परिभाषित कीजिए।
- (v) समजातता (समजात अंग) का कोई एक उदाहरण लिखिए।
- (vi) विडाल परीक्षण किस रोग के लिए किया जाता है।
- (vii) उस एन्जाइम का नाम लिखित जो अनुलेखन में सहायता करता है।
- (viii) प्रतिजैविक को परिभाषित कीजिए।

खण्ड(ब)

लघुत्तरात्मक प्रश्न संख्या 04 से 15 (प्रत्येक प्रश्न 1½ अंक)

- प्रश्न 4. द्विनिषेचन क्या है? भ्रूणपोष के प्रकारों को समझाइए।
- प्रश्न 5. लघुबीजाणुधानी की संरचना बनाते हुए इसके विभिन्न भागों के कार्यों को लिखिए।
- प्रश्न 6. यदि पुरुष नसबंदी करते समय चिकित्सक दांयी तरफ

शेखावाटी मिशन-100

सत्र: 2023-24

की शुक्रवाहक नली को बांधना भूल जाता है तो बंध्यकरण पर क्या प्रभाव पड़ेगा।

- प्रश्न 7. मानव में ABO ब्लडग्रुप की वंशागित को उदाहरण सहित समझाइए।
- प्रश्न 8. एकल संकर क्रॉस क्या है? इस क्रॉस पर आधारित मेण्डल के नियम लिखिए।
- प्रश्न 9. भूमि की उत्पादकता बढ़ाने के लिए आप किसान को क्या सलाह देंगे? समझाइए।
- प्रश्न 10. वाहितमल से आप क्या समझते है? इसका उपचार क्यों आवश्यक है।
- प्रश्न 11. प्रतिबंधन एण्डोन्यूक्लिएज की पुनर्योगज DNA निर्माण में भूमिका को समझाइए।ई-कोलाई क्लोनिंग संवाहक PBR³²² का नामांकित चित्र बनाइए।
- प्रश्न 12. वाहक क्या है, उत्तम वाहक के गुण लिखिए।
- प्रश्न 13. GMO क्या है, GM पादपों के महत्व को लिखिए।
- प्रश्न 14. ट्रांसजैनिक जन्तुओं के जैविक उत्पादों के उत्पादन में योगदान को समझाइए।
- प्रश्न 15. स्वस्थाने एवं बाह्यस्थाने संरक्षण में तीन अन्तर लिखिए। खण्ड (स)

दीर्घ उत्तरीय प्रश्न : प्रश्न सं.16 से 18 के उत्तर लिखिए। (शब्द सीमा 100 शब्द) (प्रत्येक प्रश्न 3 अंक)

- प्रश्न 16. निम्नलिखित के कार्य लिखिए।
 - (1) प्रोस्टेट ग्रंथि (2) सरटोली कोशिका
 - (3) LH & FSH हार्मोन

अथवा

शुक्रजनन किसे कहते है। शुक्रजनन क्रिया को समझाइए।

प्रश्न 17. समष्टि की विशेषता बताइए।

अथवा

निम्न पर टिप्पणी लिखिए।

(i) सहभोजिता (ii) सहोपकारिता

प्रश्न 18. आनुवांशिका कूट एवं HGP (ह्युमन जीनोम प्रोजेक्ट) की विशेषताएं लिखिए।

अथवा

न्यूक्लियोसोम किसे कहते है? DNA कुण्डली का पैकेजिंग समझाइए। न्यूक्लियोसोम का नामांकित चित्र भी बनाइए।

खण्ड(द)

निबन्धात्मक प्रश्न : प्रश्न सं. 19 व 20 के उत्तर लिखिए। (शब्द सीमा 150 शब्द) (प्रत्येक प्रश्न 4 अंक)

- प्रश्न 19. निम्नलिखित में अन्तर बताते हुए प्रत्येक का उदाहरण दीजिए।
 - (A) सक्रिय एवं निष्क्रिय प्रतिरक्षा
 - (B) B-Lymphocyte & T-Lympocyte

अथवा

निम्न बिन्दुओं के आधार पर एड्स रोग का वर्णन कीजिए।

- (A) रोग जनक का नाम (B) रोग परीक्षण
- (C) रोग के लक्षण
- (D) पश्च विषाणु की प्रतिकृतियन का चित्र
- प्रश्न 20. (i) उत्पादकता को परिभाषित कीजिए।
 - (ii) जैव भार स्वरूप में उत्पादकता के मापन की इकाई लिखिए।
 - (iii) प्राथमिक एवं द्वितीयक उत्पादकता को समझाइए।
 - (iv) नेट उत्पादकता एवं सकल उत्पादकता में अन्तर लिखो।

अथवा

- (i) पारितंत्र में स्तर विन्यास (Stratification) से क्या तात्पर्य है?
- (ii) अपघटन क्या है? अपघटन क्रिया के विभिन्न चरणों को समझाइए एवं आवश्यक चित्र बनाइए।

समस्त शिक्षा विभागीय आदेशों व रोजगार समाचारों के लिए जॉइन करें Telegram चैनल (@ShikshaaVibhag)

Telegram:- शिक्षा विभाग समाचार

Facebook:- शिक्षा विभाग समाचार

शिक्षा विभाग से जुड़ी सभी खबरें, दैनिक समाचार-पत्रों की शैक्षणिक पेपर कटिंग न्यूजस व प्रतियोगी परीक्षाओं से सम्बंधित रोजगार समाचार सबसे पहले Fast गति से प्राप्त करने के लिए ऊपर दिए गए Join Channel बटन पर क्लिक करके शिक्षा विभाग के टेलीग्राम चैनल व फेसबुक ग्रुप से जुड़ें।
